

Commuter Tracking Sensor Network

“A wireless sensor net for outdoor tracking and
localization.”

Project Principles:

Seth Hendrick - srh7240@rit.edu

Alessandro Sarra - ags7798@rit.edu

Jared Mistretta - jxm6666@rit.edu

Project Collaborators:

Dr. Jeffrey Wagner - mjwgse@rit.edu

Final Report Date:
December 11, 2014

Commuter Tracking Sensor Net 1

Table of Contents

Overview...3

Requirements Specs...5

Engineering Specs..5

Concept Selection...9

 Signal Acquisition Method..10

 Node Communication Method..12

 Gateway to the internet..14

 Webserver / Cloud storage..14

Design..16

 The Power System..18

 Windbelt..18

 The Power Circuit...25

Battery…………..45

 Image Capture and Processing...46

 Original Idea...46

 Backup Plan...49

 Infrared Sensor...52

 Network Architecture..54

 Computer Vision Algorithm..56

 Enclosure...59

 Cloud Server and Gateway Node..61

Commuter Tracking Sensor Net 2

 Gateway Software...63

 Database...69

 User Interface and Controls...73

 Engineering Standards..81

 Multidisciplinary Aspects...82

 Background...83

 Outside Contributors...84

Constraints / Considerations..85

Cost..87

Testing..89

 Signal Acquisition and Conditioning...89

 Computer Vision Testing..97

 Enclosure Testing..101

 Network Architecture Testing...103

 Server Security Testing..105

 Website Testing...107

 Gateway Software Testing...109

Risks...111

 High Risk Investigations...113

Schedule...115

Perspective..123

Commuter Tracking Sensor Net 3

Overview

Needs - Quantifying a dollar value for a public good or a public trail, like any public land,

can be a difficult task. As the product is being paid for via third party channels, (e.g., state

and local taxes), the utility gained by the actual user (who may have not paid any taxes

for the good) of the trail cannot be directly correlated with the taxes paid. The actual usage

of the trail needs to be tracked to gain a better understanding of the trail value in terms of

usage.

Objective - The objective of the project is to capture the usage data for the Lehigh Valley

Trail. These data include the mode of transportation and the entry and exit points

commuters use. The data will then be accessible via a web interface to a limited set of

users.

Description - A wireless sensor network that utilizes computer vision and mesh

networking will track the usage of the Lehigh Valley trail. The network is comprised of a

series of modules that use image sensors to recognize commuters and their modes of

transportation. Additionally these modules communicate with one another to determine

what are the entry and exit points commuters are using to access the trail. The network

has a gateway node that allows the data to be backhauled to the internet. The data is

stored via cloud storage and accessible via a web interface.

Commuter Tracking Sensor Net 4

Figure 1 - Marketing Diagram

Figure 1 is a marketing diagram that targets the average user. It shows several subjects

passing in front of the blue sensor node located on the Lehigh Valley trail. The sensor

node is shown detecting the size of the object passing in front of it, as well as the

direction the runner is travelling. The node is also located near two trail entrances,

which make it possible to estimate which access points are used to enter the trail.

Commuter Tracking Sensor Net 5

Requirements Specs -

Customer Needs (Marketing Requirements) -

1. Modules will detect commuters and the path they are taking.
2. Modules will determine the mode of transportation used by the commuter.
3. Modules will be deployed for a week of time without need for maintenance.
4. Trail modules will be able to intercommunicate via a network.
5. Data gathered by the network will be stored via a cloud solution.
6. Data will be accessible via a website interface to a limited set of users, including

stakeholders and developers.
7. The website will display the status of each trail node, and provide basic control of

the nodes.

Engineering Specs -

Table 1 - Engineering Specifications

Spec

Marketing
Reqs.

Engineering Specification Justification

1 1,2 The image sensor must be
able to capture the image.

The image is needed so that
CV can be performed.

2 1,2 The image sensor must be
able to perform in a variety of
light intensities and directions
including overcast weather,
dusk and dawn visibility, and
midday brightness levels.

The image sensor will be
outside and exposed to various
weather conditions and light
levels throughout the day.

3 3 The image sensor must draw a
small amount of power relative
to other image sensors on the
market, which is 50 µA in
standby and 110 mW in active
mode on average.

The image sensor is running
on a battery, and must draw a
minimal amount of current to
maintain charge for prolonged
periods.

4 1,2 The lens responsible for image
acquisition must have a field of
view that creates a consistent
image size across the various
positionings that the modules
will have relative to the image
subjects.

The image subjects will vary in
size and must produce the
same size image for increased
consistency and accuracy in
CV algorithm output.

Commuter Tracking Sensor Net 6

5 1,2 The processor must be able to
acquire images from the
sensor and perform CV
algorithms on the acquired
images.

The commuter’s mode of
transportation must be
determined.

6 3 The processor must draw a
relatively small amount of
power, which is 140mA on
average while performing CV
algorithms.

The processor is running on a
battery, and must draw a small
amount of current to maintain
battery charge for prolonged
periods.

7 4 The trail nodes must
communicate on a band that is
allowable by the FCC.

The project must adhere to
IEEE ethical standards, and
therefore must be legal in all
regards.

8 4 The trail nodes must have a
range of at least 3 miles.

The greatest distance between
any two nodes is approximately
1.75 miles assuming line of
sight is unobstructed.

9 5,6 A module must provide
gateway services that will link
the network to a database
service.

The data from the network
must be transferred to a
database, so it can be
accessed through the Internet.

10 5,6 The cloud storage solution
must have enough memory to
hold all of the data set that is
collected.

The data acquired must not be
lost due to insufficient space.

11 6 The data from the database
must be accessible via a
standard web browser for both
mobile and desktop devices.

The data must be easily
accessible.

12 6 The data from the database
must be viewable in a variety of
graphical representations.

The data must be easily
readable.

13 6 Web site access must be
limited to a select user base.

The data should not be viewed
by the public due to privacy
concerns.

14 3 The trail nodes should enter a
low-power state in the evening.

The image sensors will not be
able to capture images in the

Commuter Tracking Sensor Net 7

dark, and all power-saving
options must be considered.

15 3 The trail nodes must be able to
operate in the weather
conditions of Rochester, NY.

Replacement of nodes would
be costly, and loss of data
would also result.

16 3 The modules should be hidden
from view when deployed in
the field.

Strategically placing the
modules will deter theft.

17 3 The trail modules’
communication method should
draw approximately 120mA
while active and 30mA while on
standby.

The trail modules are battery
operated, and must draw a
minimal amount of current in
order to maintain charge for
prolonged periods.

18 3 A sustainable energy source
shall be provided to each trail
module.

The module’s battery source is
recharged, and will last longer.

19 4 Modules will use a wireless
mesh protocol.

A mesh protocol provides the
needed flexibility.

20 6 The server that hosts the data
must be secure to prevent any
unauthorized access.

The server’s data must be
private, and can not be
tampered with from outside
forces

21 4 Mesh protocol must have
encryption services.

Needed to maintain security of
data.

22 6 Server must have an uptime of
95%. This means that
protections from DDOS and
similar attacks must be built in.

With no server, the data is not
accessible to stakeholders.

23 6 There should be a “Status”
page hosted somewhere other
than where the main server is
to notify the user if the server is
down, or if maintenance is
going on.

Users (and developers) should
be kept in the loop if the
service is down, and why.

24 4 The network will also be
configured so that nodes have
a common operating picture.

Information will be made
redundant and synchronization
of data will be maintained

Commuter Tracking Sensor Net 8

between all nodes and the
server.

25 3 The sensor nodes should not
provide an environmental
threat of any nature.

It is plausible for the battery
unit within the sensor nodes to
plate, potentially causing a
hazardous situation. The
enclosure should prevent an
internal hazard from escaping
to immediate surroundings.

26 7 The website user interface
should allow an admin user to
power-cycle a node.

Performing a manual power-
cycle on a node is time
consuming, as the user must
travel to the trail, walk to the
node and reset it.

27 7 The admins should be alerted
through the web interface or
email if a node requires
maintenance.

If notifications of the node’s
status are automatic, it
prevents maintainers from
walking out to the trail every
day and ensuring all the nodes
still work.

Commuter Tracking Sensor Net 9

Concept Selection

While preliminary research has shown that there are several systems with wireless sensor

nets that use video for tracking and localization, one all-inclusive solution that performs

this task outdoors has yet to be found. Additionally none of the systems that were

researched offer the breadth of services that are being proposed: on board CV, low power

operation, diverse deployment environments and configurations, and a web interface for

accessing data. None of the systems utilize a trickle power mechanism either. Using the

windbelt for trickle charging in this sort of application is a novel use of the technology, and

would serve as an identifying factor for the project, allowing it to stand out among others.

Table 2 - Concept Selection Chart

Problem Solution concept

Detect Commuter 1. Computer Vision - Selected
2. Pressure Sensor
3. Laser Sensor

Module Networking 1. Wireless Mesh - Selected
2. Wi-Fi
3. SDR Ham

Power Charging 1. Windbelt - Selected
2. Solar
3. Turbine
4. None

Data storage and access 1. Cloud Solution
2. Custom web server - Selected
3. Local storage and access

Gateway 1. Raspberry Pi and Ethernet - Selected
2. Wi-Fi
3. 3G/4G
4. Proprietary Radio

CV was selected as the method to gather the data as it is considered the most versatile

method to accomplish our tasks. Multiple systems would be required to gather the same

data if other technology was used.

Commuter Tracking Sensor Net 10

Wireless mesh technology was also chosen for its versatility and adaptability. Regular IP

networking does not apply well to the wireless arena. By using a mesh protocol there is

no need to preconfigure the network topology. It is desired that the user be able to apply

the modules and technology being developing for a variety of applications, not just our

specific use case.

The windbelt was chosen for its compact design and high efficiency when compared to

other systems of this size. It is also considerably cheaper than using solar panels or wind

turbines.

Signal Acquisition Method

Power must be provided to the MCU and connected peripherals for an extended period

of time. For this reason, use of a sustainable energy resource is required to keep nodes

deployed on the trail for longer periods. With the sustainable energy source, the need for

manual recharge of the connected energy storage device will occur fewer times over a

given period. This is ideal, since manually charging the storage devices would require

traveling to each node, disconnecting the batteries, bringing them to the base station and

connecting them to one charger, which would have the ability to charge only one battery

at a time. If this were the case, it would require extended periods of time with the nodes

not being deployed and not collecting valuable data for that time period. On all accounts,

the project would be halted for that duration. Several sustainable energy sources were

researched for their various positives and negatives. It was determined that the energy

source should be efficient, converting a reasonable amount of AC current from a small

amount of natural energy, that the source should be unique in nature, that it should

provide an adequate amount of energy over time to the storage solution, that it should be

relatively low-profile so as not to attract the attention of passersby, and that it should be

of relatively low cost.

Commuter Tracking Sensor Net 11

Table 3 - Windbelt Alternatives Pugh Chart

Alternatives Design 1
Windbelt

Design 2
Solar

Design 3
Turbine

Design 4
None

Efficient 5 5 3 1

Unique 5 3 3 1

Adequate 3 5 4 1

Low-Profile 5 3 1 5

Cost 5 3 1 5

Difficulty 4 2 1 5

Sum 27 21 13 18

Table 3 shows the four different sources that were considered, including windbelt energy,

solar energy, turbine, and not having a sustainable solution. The windbelt solution was

chosen because it was rated highly in all required areas except adequate current. The

smaller current supplied by the windbelt was considered a reasonable downside to using

the technology. When compared to other sources, such as solar, it is less costly and lower

profile. Turbines would drive up the cost, and make low-profile implementation next to

impossible, and not having a sustainable solution would be a less costly yet time-

consuming alternative.

Commuter Tracking Sensor Net 12

Node Communication Method

Each node must be able to communicate with other nodes over the entire length of the

trail. Figure 2 shows the length of the trail along with the potential node positions.

Figure 2: Approximate Trail Node Locations and Trail Entry Points

Each numbered orange circle in Figure 2 is the approximate location of where a node should

go. The hollow red circles are trail access points. There is one node in between each access

point. The orange circle labeled “17” is Jared’s house, and that is where the gateway node

will be. For scale, the trail left-to-right stretches about 15 miles, and the vertical distance

between the top-most and bottom-most nodes (9 and 11) is roughly 4 miles.

The nodes must be able to send data to each other and to the database. The greatest

estimated distance between two nodes is roughly 1.75 miles. Therefore, the selected

solution must be able to communicate data at a distance of at least 2 miles, although the

greater the distance the better. There were three main methods considered: a giant

directional antenna, SMS communication, and ZigBee radio modules.

The first idea considered was to deploy a giant Wi-Fi antenna at Jared’s house (position

17 in Figure 2), which is only half a mile from the south-west end of the trail. By pointing

1 or 2 antennas in the direction of the trail, most, if not all, of the trail can be covered. By

going with the directional antennas, it means that there is a centralized node at the

antenna location that is collecting data from each of the trail nodes, and syncing that data

Commuter Tracking Sensor Net 13

with all the other trail nodes, along with the database. Some of the antennas researched

could reach distances of over 28 miles, and were cheaper than buying 17 ZigBee

modules. However, upon further investigation, the legality of deploying such devices was

unclear. Most directional antennas are designed for point-to-point communications; that

is communicating with one and only one other point. For the purposes of the sensor

network, the antennas need to do point-to-multipoint communication, or communicate

with more than one node at a time. Using antennas designed for point-to-point

communication for point-to-multipoint can be illegal depending on the antenna. In addition

to the legality issue, the trail is not straight, and therefore a directional antenna might not

fan out enough to cover the entire trail. An omnidirectional antenna, or an antenna that

goes in all directions, could be used to get a good fan out, but no omnidirectional antennas

were found that had a long enough range. The final problem with using a directional

antenna is that each of the nodes still need some kind of Wi-Fi dongle. USB Wi-Fi dongles

are less than $10, which are cheaper than buying 17 ZigBee modules. However, the MCU

may not be compatible with the USB Wi-Fi dongles. Due to the questionable legality, and

the fact that the fan-out of the antenna is unknown, this idea was rejected.

Another plan to have the nodes communicate with each other was to connect GSM chips

to each node and have the nodes communicate with each other through SMS. GSM

chips are designed for low-powered mobile devices, so the power footprint would

probably be small. With SMS, the range between each of the nodes is no longer a

problem, as they can be deployed anywhere, and still be able to send a text message,

assuming a phone signal. Although the GSM chips are cheap, being $10 to $20 apiece,

sending SMS messages requires a carrier such as AT&T or T-Mobile, and they are not

free. Eventually, sending SMS messages will cost more than using a ZigBee module. Due

to the recurring cost, this idea was rejected.

The chosen solution was to use the Digi International XBee 900 HP radio module. The

XBee has built in mesh networking, so no mesh networking software needs to be

written. It also has a range of 9 to 28 miles, depending on the antenna and line-of-

sight. The XBee has a UART interface, which allows it to send data from the MCU. Most

importantly, the documentation also clearly states how to use the device legally so the

project does not get shut down by the FCC.

Commuter Tracking Sensor Net 14

Gateway to the internet

The trail nodes need some kind of access to the internet to send its data to a

database. One of the concepts considered was to use 3G or 4G attached to one or two

of the nodes, and send data to the database over 3G through the cellular network. The

good thing about 3G is that range is not a problem. As long as there is a good cell phone

signal, data from the trail nodes can go anywhere in the world. The problem with 3G is

that it requires a data plan from a wireless carrier, making a recurring cost per month

which is less than desirable. Also, 3G seems to use a lot of power, which is a problem

since the trail nodes are running on a battery, and power is limited.

Another idea was to purchase a gateway device that would convert the data from the trail

nodes to either Ethernet or USB, and connect it to a PC at Jared’s house (node 17 in

Figure 2). Jared’s house has an internet connection which will be the access point to the

World Wide Web so the data from the trail nodes can be sent to the database. This idea

would make the most sense, but there is a cost problem as gateways would incur an

additional expense. There is, however a cheaper alternative.

The choice for the gateway to the internet was to use a Raspberry Pi and an XBee. The

XBee will communicate with the trail nodes, and send any data that needs to be written

to the database through the Raspberry Pi’s UART connection. The Pi has an Ethernet

port, so it can send data from the trail directly to the internet. The Pi has an added bonus

as well. It can act as both the gateway and the web server at the same time.

Web Server / Cloud storage

The data from the trail nodes needs to be saved to a database somewhere. That data

must also be able to be accessible through a web browser via web pages. One idea that

was considered was using a third party for the cloud storage of the database and for

hosting the web site. There are free hosting services, such as x10Hosting, so cost is not

a problem. However, the host might give little control over what can or cannot be installed

on the server. Also, additional software needs to be written to send data from the

Raspberry Pi to the third party host so the host has the most up-to-date data from the

Commuter Tracking Sensor Net 15

trail. One advantage of having a third party web host is that it can handle a large number

of users. However, since heavy traffic is not expected on the site due to the limited

number of users that will have access, this advantage does not hold much

weight. Another advantage is that a third party site might do automated backups, but this

can be easily done on a local server as well.

Another concept would be to use the same Raspberry Pi that will function as a gateway

node for the web server to manage the “cloud” storage for the database as well. Using

the Pi in this way gives total control over what software can or cannot be installed on the

system. The Pi also saves some coding, as there is no need for software to be written

that will send the trail node data to some third party host from the Pi; the data from the

trail nodes will go directly to the database, which will live in the Pi’s memory. The Pi does

come with a few drawbacks however. The first one is that it cannot handle as many users

as a third party host. This was not considered an issue due to the low volume of users

that will be allowed to access the server. The second downside is if Jared’s house loses

power, then the website will go down as well. A “status” webpage page might need to be

hosted somewhere else, (e.g., another team member’s house), which will ping the Pi

every few minutes and display on the status webpage whether or not the trail data website

is down or not.

The selected concept, is to use the Raspberry Pi as the server. The main reason is so

there is total control over what is able to be installed on it, and the choices are not limited

to whatever the third-party hosting site offers.

Commuter Tracking Sensor Net 16

Design

The commuter tracking system overview is shown in Figure 3, and is composed of 16

nodes established along the length of the Lehigh Valley Trail that communicate traffic

information to a gateway node through use of external antennas. The gateway then stores

the data in an associated database. Users have access to the traffic information and the

sensor net through a web based graphical user interface.

Figure 3 - System Overview

Each sensor node meets a low power requirement while providing the ability to capture

and process images. The network is also be configured so that nodes have a common

operating picture. In this manner, information is made redundant and synchronization of

data is maintained. The approximate radio frequency range of each node is at least 3

miles to accommodate 15 miles of trail with some overlap of neighboring nodes.

Figure 4 shows a hardware block diagram illustrating flow of power and data throughout

the system from a high-level perspective. Power is provided via a trickle-charge,

sustainable, low output energy resource and fed into a power regulation device, where it

is converted from AC to DC. The regulation device also rectifies voltage output prior to

supplying power to the image sensor, image processing component, MCU and radio

module to ensure they are operating in nominal conditions. A Lithium Ion battery is used

to store the harvested energy, which is split using a simple voltage regulation device that

Commuter Tracking Sensor Net 17

provides regulated current to a secondary boost converter and step-down buck converter.

The buck converter then provides 3.3V to an XBee radio module. The secondary boost

converter provides 5V to two Cortex M processors located on the camera module. An

image sensor on the same module provides motion capture information to one of the

processors, and the other oversees the transfer of data to and from a radio module

connected to an external antenna. An infrared module is connected to the auxiliary

processor, allowing the node to operate during low light conditions and waking the image

sensor from sleep mode when it senses a commuter.

Figure 4 - Hardware Block Diagram

Commuter Tracking Sensor Net 18

The Power System

Windbelt

A windbelt is used to trickle-charge a lithium ion battery due to the inherent need for

sensor nodes to be deployed for longer durations with less manual intervention. Table 3

shows the alternative sustainable energy sources that were considered, along with point

values for several different categories of need. It was desired that the chosen design

provide sustainable energy efficiently and adequately with a low profile and low cost.

Utilization of a unique design was also considered to give the project an interesting touch.

The windbelt design met requirements more than other choices, which included solar and

turbine, and the choice of not having a sustainable energy element. Due to its potential

effect on overall sensor network deployment, the windbelt was considered a high-risk

design component. It was later discovered that the energy source is more than capable

of providing adequate charge to the battery management system.

The commuter tracking network is powered using a pre-charged lithium ion battery

capable of providing 3.7 - 4.2 V to voltage regulation devices and then to connected

peripherals. The windbelt produces a small AC current based on the aero-elastic flutter

effect to provide a trickle-charge to the battery. This is done for a fraction of the cost that

would be incurred if using turbine or solar sources, and can provide exponentially more

power for any given wind speed than turbine technology. As shown in Figure 5, this can

be done on a specific model windbelt for wind speeds as low as 3.5 m/s, supplying 0.2

mW of AC power across a 390-Ω load at 70 Hz. This power output improves exponentially

as wind speed increases, taking full advantage of variability of environmental conditions.

Commuter Tracking Sensor Net 19

Figure 5 - Wind Speed (m/s) vs. AC Power (mW)

Likewise, power is provided by the Li-Ion battery during time periods where wind is not

present. The flutter effect produces power from wind by vibrating a band pulled taut across

a small opening. The band repeatedly moves a small magnet across one or more coils,

inducing current upon connected wires. As an example, the µicroWindbelt shown in

Figure 6 is able to power wireless sensors through the attached 3-V DC buffered supply.

This model exhibited characteristics similar to those we wished to provide in our own

custom implementation of windbelt technology. The design was developed in an

evolutionary manner, generating working prototypes that were adequately tested and

implemented through use of RIT’s 3-D printing facilities.

Commuter Tracking Sensor Net 20

Figure 6 - The Humdinger µicroWindbelt

Dimensions of the design shown in Figure 6 are 13 cm by 3 cm by 2.5 cm. The design

was developed by Shawn Fraye of Humdinger LLC, and was specifically derived for use

with microcontrollers, providing 0.2 mW at 3.5 m/s, 2.0 mW at 5.5 m/s, and 5.0 mW at 7.5

m/s at 70 Hz. It can provide anywhere from 50-200+ Wh at the listed dimensions, and

charges large onboard capacitors.

Since the battery used in the application was of much larger capacity than a coin-cell, a

larger version of the windbelt was prototyped. Several iterations of design were

implemented and tested. The first consisted of a simple wooden structure of about two

feet in length. A band was bolted between the two ends of the structure with two large

hard-drive magnets attached to it. To test the device, wind was blown across the band.

This prototype was unsuccessful, as the magnets were too heavy, and the inductor coil

was not positioned properly according to Faraday’s Law, shown in Figure 7. In order to

increase the amount of electromagnetic flux induced, the pole of the magnet should have

been positioned perpendicular to the end of the coil. This orientation would increase the

rate of change of flux through the circuit, which increases proportionally to induce EMF.

Also, due to the fixed nature of the band, the frequency at which the belt vibrated could

not be adjusted. This made characterization of the device fairly linear, and uninformative.

A limited number of windings on the coil was yet another limiting factor, as area of the coil

increases with each winding.

Commuter Tracking Sensor Net 21

Figure 7 - Faraday’s Law

The second design shown in Figure 8 was longer, measuring at about 30”, and utilizing a

pulley structure to hold the belt perpendicular to the cardboard body of the windbelt. The

material allowed for several holes to be drilled along the length of the belt, where the

pulley structures could be repositioned for testing of different belt lengths. Problems with

this design were related to the pulleys, as they could not hold the belt taut enough to

provide consistent frequencies of 60 Hz when vibrating. Nuts used to keep the pulleys

fixed continuously came loose, and were hard to manage. The cardboard was not thick

enough to prevent flexing due to stress applied by the components, and the distance of

the belt from the tube created a space restriction, so the coil was improperly positioned

underneath the magnet to account for lack of space.

Figure 8a - Windbelt Prototype 2 Side View

Figure 8b - Windbelt Prototype 2 Top View

Commuter Tracking Sensor Net 22

An industrial sized fan was used to provide a 15 m/s wind source to the second prototype,

and due to the position of the coil in relation to the magnet, consistent AC voltage could

not be produced. The belt would, on occasion, produce some AC voltage when the coil

moved into range of the magnet, but amounts were not adequate for the application.

The third windbelt prototype shown in Figure 9 was constructed from 2” diameter PVC

pipe cut at a 30” length. Pulley assemblies like those used in prototype two were more

effective in this design, since the added friction from the PVC material kept them from

moving. Bolts could also be tightened as much as desired without flexing the pipe.

Although the belt could produce AC voltages in excess of 1.5 V at times, performance

was once again inconsistent due to the orientation of the coil.

Several options were considered to fit the coil in the correct position for Faraday’s Law.

Toroid inductors were considered to allow for a lower profile coil, and the ability to position

the band lower alongside the coil. This would bring the coil very close to the magnet,

allowing for stronger induced flux. An alternative was to change the oscillation so that the

magnet was vibrating vertically alongside the end of the coil.

Figure 9 - Windbelt Prototype 3

The final prototype of the windbelt shown in Figure 10 changed the orientation of the

magnet. In addition, a second coil was added to allow for twice the induced flux. Each coil

had 2000 windings, increasing the area of the magnetic field and the rate of disruption. A

brace screwed into the end of the fixture was used to vary the tension of the belt so that

a 60-70 Hz vibration could be achieved. Magnets were fixed in place on the belt with

magic tape, and coil assemblies were held to the fixture with duct tape.

Creating the coils involved epoxying a ferrite core to two Plexiglas plates. This allowed

for more efficient coil winding with more control over placement of the wire. Once the coil

Commuter Tracking Sensor Net 23

assemblies were created, they were mounted and raised up or lowered using wooden

shims. This allowed for very close proximity to the magnet, and more EMF.

Using the fan shown in Figure 10, varying wind speeds were tested on the device at a

variety of angles and distances from the wind source. On average, the windbelt produced

approximately 2.0 VAC peak to peak for a 15 m/s wind source at about 60 Hz. Further

optimizing the signal involved moving the magnet closer to the end of the band, and

tightening the band to produce frequencies higher than 60 Hz. This resulted in about a

0.5 V AC improvement at about 65 - 70 Hz. Tightening the band beyond a certain point

actually had adverse effects on the signal. Similarly, using larger magnets and positioning

them too close to the end of the belt also produced weaker signals. Once the windbelt

prototype was optimized, it was prepared for outdoor testing. A small breadboard with a

half-wave rectifier circuit was fixed to the top, and the inductors were placed in series with

the rectifier to produce pulsating DC.

Outdoor testing was accomplished by attaching the windbelt to a lamp post on RIT

campus. The belt was left in 25 m/s winds, and gathered data via a BeagleBone Black

ADC attached to the output of the half-wave rectifier. The ADC data was then transferred

via Wi-Fi to a database connected to the project website. Data gathered showed that the

ADC value was capped during wind gusts, and enough power was generated to keep the

boost converter running for extended periods of time.

Commuter Tracking Sensor Net 24

Figure 10 - Windbelt Prototype 4

Commuter Tracking Sensor Net 25

The Power Circuit

The trickle-charge supplied to the Li-Ion battery was of a low enough current to keep a

fully charged battery at full capacity while not causing damage to the battery. This was

ensured through use of a rectification circuit positioned after the windbelt that would cut

charge of the battery to at most 7 C, or 7 charge hours to full battery capacity. This limit

was imposed for safety reasons, since a Li-Ion battery could potentially overcharge,

causing damage to the cells and possibly plating out the metal on the battery. Other safety

features of the battery include reverse polarity protection, a charge temperature limiter

that prohibits charge when the battery is out of range of a certain threshold, and discharge

current protection to prohibit reverse flow of current from inhibiting the generation of

inductive current.

Figure 11 - Signal Conditioning Block Diagram

Figure 11 shows a block diagram of the input signal as it passes from the windbelt to the

rectification circuit, which is composed of a simple Schottky diode. The diode will function

to keep the AC signal from going into negative values, essentially cutting off the lower

portion of the waveform and maintaining an adequate DC range for the boost converter

to exploit. A capacitor is added after the rectifier to smooth its output, also keeping signal

levels from dropping too far between periods and raising the average voltage. The

complete half-wave rectifier along with smoothing capacitor design is shown in Figure 12.

Commuter Tracking Sensor Net 26

Figure 12 - Half-Wave Rectifier with Smoothing Capacitor

As shown, the current ID will pass from the 60 - 70 Hz AC source provided by the windbelt

through the diode and be divided into IC and IR. The voltage levels across the resistor are

represented by the waveform shown in Figure 13.

Figure 13 - Waveform Result of Half-Wave Filter

The AC signal is kept at a high enough value for the remainder of the signal conditioning

circuit to work effectively. Negative AC values are eliminated due to reverse current

protection of the diode, and risk associated with applying reverse current to the battery is

also reduced.

Testing the voltage produced by the windbelt prior to leaving the signal conditioning circuit

showed that it was generating voltages of about 1.25 VDC on average at the output of the

rectifier, with 25 m/s gusts of wind producing higher than 1.8 VDC maximum voltages. This

was considered a reliable source for the battery management system.

To further reduce risks associated with providing an unstable source to the battery, a TI

bq25504 boost converter is connected to the output of the rectification circuit via the

VIN_DC port. Initial testing showed that the half-wave rectifier was sufficient in providing

a DC source to the converter, so a full-wave rectifier alternative was considered, but not

used. Documentation for the battery management system actually states that the device

Commuter Tracking Sensor Net 27

prefers pulsating DC, and implementation of the full-wave rectifier would increase the

amount of voltage drop prior to entering the device as well as increase costs. This was

considered an unnecessary compromise for relatively minimal power gains.

Figure 14 - Texas Instruments bq25504

As shown in Figure 14, the bq25504 boost converter takes the DC signal provided by the

rectifier and drives it up to a voltage specified by the overvoltage threshold configuration,

which can then be used to safely charge the Li-Ion battery without worry that levels will

exceed safe charging voltage. The TI device was chosen due to its ultra-intelligent, nano-

power design that is ideal for implementation in a wireless sensor node application. It

provides safety features to the Li-Ion battery such as programmable overvoltage and

under-voltage protection, and thermal shutdown protection. The converter has

programmable hysteresis features that allow it to retain past voltage values for power

level tracking (MPPT), can turn on and remain running with minimal power-on voltage,

and can even warn attached microcontrollers of pending loss of power. A low voltage

cold-start of 330 mV or higher is needed to start the device, along with a VIN of at least 80

mV to allow it to continue harvesting, allowing the battery to safely charge for longer time

periods with minimal power consumption by the device. When the device is not connected

to an analog load and is not amplifying, it consumes only 330 nA.

Commuter Tracking Sensor Net 28

MPPT, or maximum power point tracking, is a technique used in energy conversion

systems that allows for continuous sampling of the output of a power source, and the

dynamic application of resistive load that will allow the circuit to obtain maximum power

during changes in environmental conditions and variations of input voltage. Internal

potentiometers are automatically adjusted to divide the voltage differently when it reaches

a certain threshold value. An external reference voltage can also be set by MCU to keep

voltage levels at a specified minimum. All threshold values are fully programmable.

The boost converter also has a “battery good” port that can be programmed to monitor

voltage of the storage device, and send a signal when it reaches a certain level. If signals

exceed a programmable overvoltage or under-voltage threshold, the connected MCU can

send a signal to shut off all connected peripherals. As reassurance that the boost

converter works with most modern day cell chemistries, Texas Instruments provides

documentation confirming compatibility with Lithium Polymer and Lithium Ion batteries.

The boost converter is of great importance in an energy acquisition scenario, as changes

in the environment, specifically wind speed and temperatures, would otherwise have a

much greater effect on the power being provided to the Li-Ion battery, and the health of

the battery as well.

Prototyping the BQ25504 was quite involved. The process began with a spreadsheet

provided by Texas Instruments that allows the user to enter desired thresholds for the

VBAT_OV, VBAT_UV, VBAT_OK_HYST, and MPPT signals and outputs the required

resistor values to obtain those signals. The MPPT, or maximum power point threshold, is

usually 0.7 - 0.8 of the windbelt’s open circuit voltage. Since this was found to be

approximately 1.25 V on average from windbelt testing, the VREF_SAMP signal that

provides the MPPT pin with the appropriate divider reference was set to 1 V, or 80% of

the average input voltage. Figure 15 shows that the resulting resistor values for ROC1

and ROC2 are 5.9 MΩ and 4.02 MΩ, respectively.

Commuter Tracking Sensor Net 29

Figure 15 - Spreadsheet Calculations of VBAT_UV and VREF_SAMP

The spreadsheet returns the closest 1% resistor values that can be purchased. As

shown in Figure 15, entering the desired values into the two bottom green cells results

in the realized VREF_SAMP signal for the chosen hardware, which is about 0.998V.

The -0.23% difference was considered acceptable deviation from ideal operating

conditions.

Figure 15 also shows the calculation for VBAT_UV, or the under-voltage threshold for

the VBAT signal that will cause the boost converter to cut current to the VBAT pin. This

was set to 3.2 V, since charging a Lithium Ion battery at voltages lower than that has

practically no effect on the battery. Values of 4.02Mohm and 6.04Mohm were chosen to

get an actual VBAT_UV of 3.128 V.

Commuter Tracking Sensor Net 30

Figure 16 - Spreadsheet Calculations of VBAT_OV and VBAT_OK

Figure 16 shows how the overvoltage and “battery ok” resistor nets were configured.

Since Li-Ion batteries have maximum charging voltage of 4.2 V, this was entered as the

overvoltage threshold. Resistor values of 4.64Mohm and 5.9Mohm were used to realize

a VBAT_OV of 4.259 V. Due to the fact that when load is added to the circuit, some

voltage is lost in favor of current, the slight overshoot was considered acceptable. The

microcontroller signal VBAT_OK was set to trigger if it was either less than 3.471 V or

greater than 3.797 V. These values were chosen after load was connected to the circuit,

and long term testing was completed to determine average operating range of the

circuit.

After determining the correct values to place within each resistor net, the Cadence

schematic in Figure 17 was generated using those values, along with capacitance and

inductance values noted in the data sheet for the device. The inductor of the circuit was

set to 22 uH, and load capacitance was set to 4.7 uF. To further reduce noise in the

circuit at the input and output nodes of the circuit, a 0.1 uF capacitor was placed in

parallel, and to reduce the runtime of the simulation in Cadence, a 0.47 uF capacitor

was used to model the battery at the VBAT node.

Commuter Tracking Sensor Net 31

Transient analysis was run with the windbelt input set to 2.5 Vp-p at 60 Hz. As shown in

Figure 18, this produced signal levels that were close to those calculated within the

spreadsheet. In the first graph voltage at the load pin, VSTOR, was approximately 4.2 V.

In the second graph, the input voltage is shown as pulsating DC, oscillating between 1.0

- 1.2 V when the device exits cold start and enters steady state. This is shown to take

about 70 ms with no load, and a capacitance of 0.47 uF at the VBAT pin. The third graph

shows that the VBAT voltage matches that of the VSTOR pin. In ideal conditions, with no

load attached, this is the case. However, it was expected that voltage would drop at both

nodes depending on the current draw of the load connected. This is because the battery

is expected to provide a majority of the power to the circuit. The battery management

system was only put in place to reduce the rate of discharge, not to dramatically increase

the charge of the battery or maintain its current charge.

A QFN (quad flat no leads) to DIP (dual inline package) circuit board was purchased in

order to prototype the circuit on a breadboard with the resistor configurations tested.

When choosing the PCB, care was taken to choose a design with a 0.5 mm pitch

Commuter Tracking Sensor Net 32

Figure 17 - TI BQ25504 Cadence Schematic

Commuter Tracking Sensor Net 33

Figure 18 - Cadence Transient Analysis Results

between pins and a 3 x 3 mm body. Figure 19 shows the PCB with and without the boost

converter soldered to it. Break-away headers are clearly visible in the image furthest to

the right, allowing for prototyping on a breadboard.

Commuter Tracking Sensor Net 34

Figure 19 - QFN to DIP Converter

Since the QFN has recessed leads, conventional soldering methods could not be used to

adhere the chip to the board. Rather, a reflow soldering technique was used to melt pre-

applied solder paste and allow it to cool. The heating and cooling process allowed the

solder to attract to the leads on the underside of the chip, forming a strong bond. To

ensure that the solder paste was applied correctly, the stencil in Figure 20 was created

out of thin aluminum pieces using a cad drawing tool and a printer. The marked sections

were then etched out of the aluminum with an acid wash.

Figure 20 - Solder Paste Stencil

When soldering, care was taken to not apply too much paste to the pads, and to align pin

one with the indicator on the PCB. The reflow process was handled by a modified toaster

oven with an MSP430 microcontroller that was programmed to allow for the correct

heating and cooling process over a specified period of time. Once the solder paste had

been melted and cooled, headers were soldered on and it was placed on a breadboard

along with the components specified in Figure 17.

Figure 21 shows the completed breadboard prototype. All resistor nets are clearly labelled

in green, while the orange wires are labelled as the outputs of the circuit. The red wire at

the bottom of the prototype carries the input signal coming from the half-wave rectifier,

and the windbelt.

Commuter Tracking Sensor Net 35

Figure 21 - BQ25504 Breadboard Prototyping

To characterize the circuit, a maximum AC voltage of 1 V was applied gradually. At about

480 mV, the boost converter powered on, reaching the overvoltage threshold at about

4.15 V in approximately 200 ms as shown in Figure 22. Both the VBAT and VSTOR pins

match in voltage since no load was applied. To test dynamic voltage response, the input

voltage was dropped to a level lower than the current one. The device responded by

dropping output voltage slightly, but MPPT functionality raised it back up to a level within

the VBAT_OK range.

Next, the circuit was characterized with the battery attached to the VBAT pin, and

produced output very similar to that in Figure 22. To emulate the current that would

eventually be drawn by peripherals attached to the VSTOR pin, a 22 ohm and 10 ohm

resistor were each placed in parallel at that node. This would account for a 182 mA current

draw in parallel with a 222 mA one. Figure 23 shows the resulting output with the load

attached.

Commuter Tracking Sensor Net 36

Figure 22 - BQ25504 Prototype VSTOR and VBAT Voltage

Voltage levels drop to about 3.7 V on the VSTOR pin and 4.05 V on the VBAT pin. This

new VSTOR level was used to determine how to tune the VBAT_OK signal that would be

used to determine if the battery was in a good state.

To test varied input voltages, the VIN signal was changed, and then dropped to 0 V. The

effect this had on the output was negligible, since the attached battery took over powering

the circuit once VIN dropped below 80 mV.

After characterizing the prototype with and without load, the EAGLE PCB design program

was used to create a custom board for the BQ25504. First, the schematic was created as

shown in Figure 24. EAGLE design libraries were downloaded from a variety

Commuter Tracking Sensor Net 37

Figure 23 - Prototype VSTOR and VBAT with Load

of vendors, all of which were available through TI’s documentation and online libraries.

The design passed all electrical rule checks, and was converted to the layout shown in

Figure 25, where the polygon tool was used to create power and ground planes, and

routes between components were manually created.

Since the design would eventually be sent out to OSH Park for fabrication, their design

rule check file was imported, and Gerber and Excellon files were created using their

standardizations, as shown in Figure 26.

Surface Mount Technology facilities on RIT campus were utilized in order to solder

surface mount components to the PCB. This involved a combination of reflow and

traditional soldering techniques. Mainly, an air gun was used to shoot compressed air

Commuter Tracking Sensor Net 38

Figure 24 - EAGLE Design Schematic

Commuter Tracking Sensor Net 39

Figure 25 - EAGLE Design Layout

into a syringe filled with solder paste. The tool was actuated with a foot switch, and the

board itself was watched closely with a microscope while carefully placing solder paste,

and then each chip over the paste. A heat gun was used to reflow the solder, and the

board was cooled prior to testing. An x-ray microscope was used to check for bridges in

the solder after cooling.

Commuter Tracking Sensor Net 40

Figure 26 - BQ25504 Custom PCB

Figure 27 shows the completed PCB. To characterize the board, JP1 was connected to

VIN. JP4 was labelled as VSTOR, and JP2 was connected to the Li-Ion battery. Voltage

levels at VSTOR and VBAT pins are shown in Figure 28. Although similar to the readings

from the prototype, the design benefitted greatly from being placed on a custom PCB, as

there was much less signal noise at the output.

Figure 27 - Custom PCB with SMT Components

Commuter Tracking Sensor Net 41

Figure 28 - Custom PCB VSTOR and VBAT

Due to the modularity of the design, and a split in voltage levels at the node after the

boost converter in the overall system, the 3.7 V produced by the battery is passed into a

secondary boost converter to be ramped up to a level that is acceptable by the Pixy

camera module. The second line that is split off of the battery node is attenuated to

provide levels acceptable by the XBee radio. These connections are made according to

the block diagram in Figure 29. Components that will be implemented in future iterations

of design, are also present in the diagram, and are described further in the retrospective.

Commuter Tracking Sensor Net 42

Figure 29 - Custom PCB Design

To step voltage down to a level acceptable by the XBee radios, a Texas Instruments

TPS62740 was used. The EVM provided by TI was configured for our application, as it

has a selectable voltage that can be changed by setting jumpers JP3-JP6 as shown in

Figure 30. Each jumper was set to ‘1’ to get 3.3 V at the output of the regulator.

The buck converter is able to output up to 300 mA of current, which meets our

specifications for the XBee radio. It also dynamically adjusts the gain to achieve 3.3 V at

the output, regardless of the input voltage. This is important for when battery levels

drop, and stage two must continue to drive the load.

Figure 30 - Stage 2 Buck Converter

Commuter Tracking Sensor Net 43

Figure 30 shows the stage two boost converter, the TPS61032. Texas Instruments

provides an evaluation module to customers that is able to meet our application’s

specifications, so it was used to prototype the design.

Figure 31 - Stage 2 Boost Converter

The boost converter generates 5 V at the output, regardless of the input to the module,

which is enough to power the embedded camera. This once again helps in situations

where the battery is discharged, but stage 2 must still be running. The dynamic gain

adjust can be disabled, and replaced with a low power mode by changing the SYNC

jumper to ground. This was disabled for characterization purposes, but may be used in

future iterations of design to enable a low power state on the attached camera.

As shown in Figure 32, voltage characterization is similar to that emulated with resistors

in the prototype testing. The voltage at the load pin, VSTOR, drops to about 3.67 V,

since 80 mA is being drawn by the XBee radio, and about 150 mA by the camera. VBAT

drops to about 4.08 V since more current is being drawn from the battery.

This means that since the battery voltage without load is about 4.15 V, the battery will

not be charged to full capacity by the battery management solution. Since this was not

the goal of the system, this is acceptable. It was found through extensive voltage level

testing that the boost converter did slow the rate of discharge by several hours over a

Commuter Tracking Sensor Net 44

24 hour testing period. This was calculated by tracking voltage over time. When the

sustainable source was applied, the battery discharged to 4.4 V instead of 4.2V.

Figure 32 - PCB VSTOR and VBAT with Load

Commuter Tracking Sensor Net 45

Battery

Figure 33 - Tenergy Li-Ion Battery Pack

The battery chosen for the design was the Tenergy Lithium Ion 3.7V 15600 mAh Battery

Pack (model number 31812). A picture of the battery can be seen in Figure 32. This

model was chosen for its relatively stable cell-chemistry, large capacity, relatively small

dimensions and weight, and larger cycle life and charge rates. The battery is capable of

charging at a rate of 15600 mA for 1 C. At 80% charging efficiency at 10 A, the battery

would reach full capacity in approximately 1 hour and 11 minutes. Reducing the charge

rate to 1 A at about 50% efficiency increases the time to full charge by about 14 hours.

Discharge rates are similar, which means that the method used for charging the battery

should be able to keep up with about half a day’s worth of battery consumption at about

1 A.

The battery can be charged up to 500 times before full capacity begins to degrade.

Dimensions are roughly 20 cm by 7 cm by 1 cm, which can fit a slightly larger windbelt

enclosure than the micro enclosure previously specified. The Tenergy battery will be able

to provide a 4.2 V nominal signal with a cut-off voltage of 2.75 V at 0.2 C discharge rate

and requires 3.7 V or more to accumulate charge.

Commuter Tracking Sensor Net 46

Image Capture and Processing

Original Idea

Figure 34 - Pixy Board Image Processing Module

To accomplish the task of capturing and processing images the CMUCam 5, or Pixy, was

originally selected. A picture of the Pixy board is shown in Figure 34. Pixy is a sensor

module that includes an image sensor and on board image processing. The Pixy utilizes

an Omnivision OV9715 image sensor capable of a 1280x800 pixel resolution. A lens with

a 70-degree FOV comes standard with the Pixy. This lens may need to be replaced

depending on the specifics of the module deployment. The NXP LPC4330 processor is

the onboard MCU that is used to perform the onboard image processing. This powerful

dual core processor can handle the image processing without too high of a power

consumption. The power consumption for the unit averages 140mA. A diagram of the

LPC4330’s architecture can be seen in Figure 35.

Commuter Tracking Sensor Net 47

Figure 35 - LPC43XX Architecture Diagram

The NXP LPC4330 MCU that is onboard the Pixy would have been used to control the

modules. The processor is a dual core ARM Cortex-M architecture, and includes an M4

and M0 core that can intercommunicate between a common bus system. This processor

is fully capable of doing the image processing that is needed and any additional control

that may be needed as well. It would simply need to send communications over UART to

the XBee modules. The XBee modules operate on their own without any need for control,

and the power system also operates without the need for a control system. Since all of

the image processing is done onboard, the Pixy simply sends a small amount of statistical

data. For example, data that can be sent by the Pixy could be the type of pedestrian that

passed in front of the camera. This is accomplished at a rate of 50Hz.

The Pixy also provides a diverse set of communication ports and protocols to interface

with a variety of devices, as shown in Figure 36. This will be used to communicate with

the XBee modules.

Commuter Tracking Sensor Net 48

Figure 36 - Pixy Module Pin-out

Sensor data (e.g. XY coordinates, object speed, etc.) will be sent to the XBees via

UART. This data will then be routed through the network to the cloud storage solution.

Currently, the Pixy includes software only for color detection. While new facilities are

being added to the Pixy constantly we will probably need to write some application specific

software. We will need descriptors for a person walking, riding a bike and riding a horse.

We should be able to adapt existing open source software to our purposes.

The Pixy is also ideal for our purposes due to its physical specifications. With dimensions

of only 2.1” x 2.0” x 1.4” the module can be hidden in an inconspicuous manner. The light

weight of 27 grams also aids in the versatility of its deployment.

However, the Pixy cam had several roadblocks on the way. For one, the onboard memory

is too small to hold the CV library we wanted to use. The code was also very difficult to

read and to the firmware was tough to alter. A backup plan was chosen for iteration 1.

Commuter Tracking Sensor Net 49

Backup plan

With the Pixy Cam tabled, the new idea was to use a Raspberry Pi and a Pi Cam to

capture the data and send it over to the XBee. This is not intended to be a permanent

solution, just as a proof of concept until the Pixy Cam can be figured out. The reason

for this is unlike the Pixy Cam, the Pi will draw too much power, and doesn’t have

enough CPU power to do the CV algorithms within a reasonable time. In addition, the

CV library used would not compile for the Pi. Figure 37 shows the Pi Cam, along with a

Raspberry Pi attached to an XBee and an infrared sensor.

Figure 37 - The Raspberry Pi and the Camera attached.

Since the Pi could not run the CV algorithms on board, the images needed to be sent

out to the gateway node, and processed on a computer with more power. Figure 38

shows the process the captured image needed to go through to be processed, and the

result written to the database.

Commuter Tracking Sensor Net 50

Figure 38- The image path

From the Pi Cam, the raw image was saved on the Raspberry Pi. The image needed to

be encoded in such a way that the XBee could send it over. Some bytes can cause the

XBee to stop sending data, which would be disastrous. The images were encoded to

Base64URL, which converts all bytes to either capital or lowercase alphanumeric

characters and ‘-’ and ‘_’ characters. All of these characters are safe to send over the

XBee. The XBee can also only send 255 characters at a time in its payload. Therefore,

the encoded image was send in pieces over the wireless network to the gateway

node. The gateway node then sent the data directly to a more powerful computer,

which decoded the image data and saved it. Once the entire image was sent over the

Commuter Tracking Sensor Net 51

network, the trail node signaled to the gateway node, who then told the big computer to

start the CV algorithm on the reassembled picture. The picture was then send to

LibCCV’s rest API, over http, also running on the big computer. The CV algorithm

would run, and the result would be returned back to the gateway node, who would then

update the database accordingly.

Although this process was slow, and a lot different from the original idea, it did

work. For future iterations, the CV must be done on the trail nodes directly. Sending

that much data over XBee is not ideal and very unstable. However, this does show that

if the XBee protocol is followed, anything that can connect to an XBee can become a

trail node.

Commuter Tracking Sensor Net 52

Infrared Sensor

Both the Pi and the Pixy cam has one weakness. When one is powered, it will be

consistently be filming the trail, even if no one is walking past. This will waste power as

the camera is active and running image processing on nothing. To help mitigate this, an

infrared sensor can be put in place that will “wake up” the camera whenever someone

walks past the trail.

The infrared sensor that was chosen was the Zilog ZMotion Detection Module

(Z8FS040), which is shown below in Figure 39.

Figure 39 - The ZMotion Detection Module

The ZMotion module comes with a variety of pins that can be used. The pinout is below

in Figure 40.

Commuter Tracking Sensor Net 53

Figure 40 - ZMotion pinout

The ZMotion module can operated in two different modes: hardware interface and serial

interface. For the purposes of this project, the ZMotion module is used in hardware

interface mode. When in hardware interface mode, pin 5 of the ZMotion module will be

set to logic ‘0’ when motion is detected. This pin can be tied to one of the MCU’s GPIO

ports, and the camera will be woken up via an interrupt whenever the logic of the pin is

‘0’. When the camera is woken up, it can do image processing before going back to

sleep.

Another advantage of the ZMotion is that is has a low-power mode, which is activated

whenever pin 7 is low. During this time, the motion sensor will not detect any motion, as

it is basically asleep. The pin that controls low power mode can be connected to the

XBee’s “module status pin,” which is set to low whenever the XBee is asleep. At night,

when the gateway node tells all of the XBees to go to sleep, not only will the XBees go

to sleep, but the infrared sensor will also go to sleep. When the infrared sensor goes to

sleep, the camera will stay asleep. This technique reduces the total power consumption

during the night, when the camera’s vision is naturally limited.

Commuter Tracking Sensor Net 54

Network Architecture

Digi XBee RF modules will be used to coordinate data among the sensor nodes, utilizing

the 900 MHz experimental band along with 2-3 dB gain antennas to intercommunicate.

An approximate RF range of 3 miles is necessary to allow overlap of each node with at

least two other nodes along the length of the trail.

The XBee name refers to a family of form factor compatible radio modules that utilize the

802.15.4 network protocol. A network of this IEEE standard specifies the physical layer

and access control for low-rate LR-WPANs, as shown in Figure 41.

Figure 41 - IEEE 802.15.4 Protocol Stack

The protocol architecture is conceptually simple, based on the OSI model. Only the two

layers shown in Figure 41 are defined by the protocol. In North America, the physical

layer utilizes the 902 to 928 MHz band, including up to 30 channels. Data rates range

from 100 kbps at 868 MHz to 250 kbps at 915 MHz.

The MAC layer allows for network beaconing, controlling frame validation, guaranteeing

time slots and handling node associations. Frame size is limited to 127 bytes for most

Commuter Tracking Sensor Net 55

802.15.4 applications, and fragmentation schemes are available to support larger network

layer packets.

The ZigBee protocol makes up the remainder of the stack, adding four main components:

the network layer, application layer, ZigBee device objects (ZDOs) and manufacturer-

defined application objects. The application objects allow for customization and complete

integration of the network. ZigBee allows for low power consumption and secure

networking in personal area networks. A small form factor is characteristic of modules

that use the protocol, along with the ability to transmit data over long distances while

passing data through intermediate devices. This is accomplished while attempting to

reach more distant nodes, creating a highly reliable mesh network topology and

eliminating the need for a centralized control for certain applications. ZigBee devices

utilize 128-bit symmetric encryption for security purposes.

The Digi XBee-Pro 900HP S3B is the specific 900 MHz module that will be used, coupled

with a 2.1-dB antenna. The radio can operate with a range of up to 9 miles provided that

LOS (line of sight) should not be an issue. This will allow for creation of a true mesh

network, since all project nodes are within a 15-mile range limit of each other along the

trail. The radio utilizes an ADF7023 transceiver with a Cortex-M3 operating at 2.8 MHz.

It can transmit at the 900 MHz experimental band that is desired, and transfers at 10 Kbps

worst case range. Speeds of up to 200 Kbps are possible at minimum range. The most

efficient transmittable range has been proven to be 4 miles with 2.1-dB dipole antennas.

The radio will be connected to the MCU via UART, and operates at 2.1 to 3.6 VDC with

a transmit current of 215 mA, a receive current of 29 mA, and a sleep current of 2.5 µA.

Commuter Tracking Sensor Net 56

Computer Vision Algorithm

There were several potential options for computer vision (CV) libraries that we could use

for the project. The major feature that we were looking for was a lack of further library

dependencies that many libraries required. Also many of the CV libraries required OS

level services that would not be reasonable to have running on the PixyCam. For these

reasons we chose to use a library called LibCCV. LibCCV can be compiles with zero

dependencies and has a very small footprint for a CV library.

Initially the plan was to utilize the Scale Invariant Feature Transform (SIFT) algorithm to

run directly on the PixyCam. SIFT would have provided the ability to create feature

descriptors for objects that appeared.

The SIFT algorithm provides the two major CV processes that we need to accomplish our

task: feature detection and description. As its namesake states SIFT selects features that

are scale invariant. Changes in scale can be a serious issue when on is attempting object

detection. By selecting features of this nature SIFT performs well under images that

exhibit both rotation and scale changes.

Figure 42 - SIFT Test Images

Figure 42 is two test images that were run through the SIFT program. You can see below

in Figure 43 how SIFT locates the same locations in each of the images below.

Commuter Tracking Sensor Net 57

Figure 43 - SIFT in action

A couple of false negatives can be seen but this is a very small percentage of the

matches.

These feature descriptors are relatively small data that could easily be sent across our

XBee network. The feature descriptors would be used to track objects across other node

locations & be used to identify the kind of object that was being tracked. These feature

descriptors would be ultimately passed through the gateway node to a powerful

desktop/server for the higher level CV processing; object detection, cross network

tracking.

The memory available on the PixyCam proved to be too small for us to flash the compiled

code to. As such a change in hardware and process was required. As described above,

a RaspberryPi and PiCam were chosen to implement the image capture system. The

captured image was then serialized and sent to a CV server.

An additional reason that LibCCV was chosen was because it offered a REST Http

interface by which we could interface with the CV server. This allowed us to continue to

use the current library with the change in configuration.

As we were putting all of the CV load onto the CV server with the image processing we

choose a different CV data flow and used the Integral Channel Features (ICF)

algorithm. ICF is a very strong (accurate) rigid object detector that LibCCV includes a

training set for pedestrian detection.

ICF analyzes the input image on a number of image channels. These channels are

typically linear and non-linear transformations, such as edge detection. Features are then

Commuter Tracking Sensor Net 58

selected depending on local rectangular sums. By utilizing this simple but diverse method,

information rich features are produced in a computationally efficient manner.

Figure 44 - ICF channel configuration example

Figure 44 describes a potential channel configuration. Several image classification

channels are running simultaneously. This level of information density is part of what

makes ICF as strong as a detector.

This configuration allows us to fully put the CV responsibilities onto the CV server.

Because of this we can potentially integrate any image capture system into our system.

This really opens up the potential areas of application and integration into existing

systems.

Commuter Tracking Sensor Net 59

Enclosure

Figure 45 - Enclosure Overview

The enclosure system had several requirements for our project. As the nodes were to be

outside for a prolonged period of time the enclosure had to be robust and able to withstand

a variety of conditions. Because of these requirements we decided that a custom

enclosure design would be needed to suit our needs.

Using the AutoDesk AutoCAD Inventor software package a design for the enclosure was

produced and iterated on, as shown in figures 45 and 46. A post system was utilized to

offset the PixyCam sensor while it was securely fixed to the enclosure. A rear

compartment was created both to house the large and bulky battery unit but also to add

rigidity to the design of the enclosure. All interior edges were filleted to provide additional

rigidity and strength. Without the filleting, forces would be focused into the edge where

the two faces meet. This would encourage cracking and ultimately the failure of the

enclosure.

A hole was kept in the front of the enclosure for the image sensor to “look” through. This

hole has an inner lip that a piece of clear Lexan would be epoxied to. The top of the

enclosure adheres to the main body of the enclosure with a simple screw system. An

additional sealing agent of some form would need to be added to the surfaces that meet

between the two pieces to ensure waterproofness.

Commuter Tracking Sensor Net 60

The enclosure was produced using an additive manufacturing process; 3D printing. The

3D printer utilized a filament extruding process. We specifically used PLA as the printing

material. It was approximately a 14hour process to print the enclosure.

The enclosure ended up being very rigid and strong despite also being very light; ~250

grams.

Figure 46 - Enclosure from Different Views

Figure 46 gives several views of the enclosure. The method by which the top would be

affixed to the body of the enclosure can also be seen. Ultimately the entire system was

able to be fit into a small enclosure with the approximate dimensions of 6”X3”X2.5”. We

were happy to be able to fit both the image capture system, power system and power

source (battery) in a relatively small package.

Commuter Tracking Sensor Net 61

Cloud Server and Gateway Node

The Digi XBee 900 HP allows communication from each of the trail nodes, but there needs

to be some way to save the data to a web-accessible database through some kind of

gateway node. This can be achieved by using a Raspberry Pi. The Pi can be used to

both read data from the trail nodes, write these data to a database, and then serve web

pages using the data from the database to users from the internet. Figure 47 shows a

block diagram on how this will work.

Figure 47 - Network Communication Diagram

Each of the trail nodes have the MCU connected to the Digi XBee module via UART. The

XBees, meanwhile, form a mesh network. Meanwhile, the gateway node has the

Raspberry Pi also connected to a Digi XBee through the Pi’s UART interface. If one of

the trail nodes needs information to be sent to the database, it communicates with the

Raspberry Pi, which will then write the information to the database that is in the Pi’s

memory. The Pi will also act as the web server as well. The Pi has a built-in Ethernet

jack that is used to connect with the World-Wide-Web. The Pi runs the server software

Commuter Tracking Sensor Net 62

Apache and the Python web framework Django, to handle http requests and send web

pages with data from the database to clients.

There is a “Status” webpage hosted on another Raspberry Pi at Seth’s

apartment. Every minute, an HTTP get request is sent to the gateway node to get the

server status. If the server returns “Ok,” the status page will display that everything is

up and running. If the server returns “maintenance,” the status page will display that the

server is undergoing maintenance. If a 404 is returned, then the server is down, and

the status page will display “down.” The purpose of this is so if a user cannot access

the server, they can go to this status page and see if there is maintenance going on, or

if the site is down completely.

Commuter Tracking Sensor Net 63

Gateway Software

There are several pieces of software running on the gateway node to ensure all the data

gets moved around correctly. Figure 48 shows a block diagram of all the processes

running on the gateway node.

Figure 48 - Gateway Software

On the Raspberry Pi Gateway Node, there is a custom piece of software that handles

getting everything to communicate with each other (labeled “Gateway Process” in figure

48). This includes getting the incoming data from the XBee to be written to the

database, sending out messages to the trail nodes, and sending emails to admins in

case something bad happens. This process runs a web server using the C++ Poco

Library. This allows other processes, including itself, to send commands to it via HTTP.

The gateway process will read from and write to the database through a C API. Some

examples of data read from the database include admin emails and phone numbers,

and the nodes on the trail. Examples of data the gateway process writes to the

database includes any entities found on the trail and any error messages that come

from the trail nodes on the trail.

Commuter Tracking Sensor Net 64

Sometimes, commands need to be run every few minutes, or at a certain time. One

example of this is every 15 minutes, the gateway process sends a command to each of

the trail nodes asking for their status. This is done via cron jobs. A cron job is a

command that is run at a certain time. The command can be run minutely, hourly,

monthly, etc. Figure 49 below shows the gateway’s current cron configuration.

Figure 49 - Gateway Node’s Crontab

This figure shows the gateway node’s crontab. Some sensitive information is whited

out. The first command is set to run every hour when the minute reaches 1 (so 12:01,

1:01, 2:01, etc.), and it tells the gateway process to talk to the database, otherwise the

connection will time out. It does this by sending an http post request via curl to the

gateway process, which runs on port 9009. The second command runs every five

minutes. It runs a script that checks to see if the gateway process is still running, and if

it’s not, it writes to the database that the process is down, which is later displayed on the

website. The third command runs every hour at minute 15, 30, and 45. This sends an

http post request via curl that tells the gateway process to look through the database for

any nodes that did not update their status within an hour. The gateway process will

then update the database accordingly, and send any emails to the admins. The last

command runs on every hour, and on every 35 minute mark. It sends a command to all

trail nodes (node 0 is a special node that means messages get sent to all nodes in the

network) to send the gateway node their status.

In its current form, the website does not directly talk to the gateway process, contrary to

what Figure 48 implies. The idea was to allow admin users to power cycle a node from

the web page, which requires the website to post to the gateway process. This did not

make it in this iteration of the project.

Commuter Tracking Sensor Net 65

The debug console is mainly used for testing purposes. When the Raspberry Pi is

started up, the gateway process runs automatically. This means that a standard user

cannot access this process to send commands over stdin. Therefore, the debug

console was written so users can send commands to the Gateway node over

http. Figure 50 shows a picture of the simple debug console, along with all the features

it can do.

Figure 50: Debug Console

The debug console allows for users to send commands for test purposes to the gateway

process. In the example above, the gateway process will send an http command out

over XBee. In this case, it is sending to the gateway node a message that node 1

detected a pedestrian.

The gateway process also communicates with the XBee over UART. When it needs to

send a message out over XBee, it formats the packet and sends the packet out over

UART. Upon receiving a packet, an interrupt occurs that tells the process data is ready

to be read off of UART, and the data is added to a queue for processing. The payload

from the packet consists of two parts. The first part is an URI to post to, and the second

part is the data to send. Basically, the gateway node is sending an http post request to

Commuter Tracking Sensor Net 66

itself, and then the command gets executed. For example, if a trail node wants to

update its status to “okay”, it will send the packet:

/node_status\tnode=2|status=1

The gateway process will then separate the URI to post to and the data from the ‘\t’

(tab) character. It will then convert all ‘|’ characters in the data section to an ‘&’

character, as that is what HTTP requires. The reason why an ‘&’ character was not sent

over XBee in the first place is because for some reason, ‘&’ stops the XBee from

completing the message. The gateway process then calls the following command:

curl -X POST -A thisIsASecret --data ”node=2&status=1” http://localhost:9009/node_status

The gateway process will then treat the command exactly like it received it from a cron

job or the debug console. The sequence diagram in figure 51 shows this process.

Commuter Tracking Sensor Net 67

Figure 51- Gateway Process Sequence Diagram

The Gateway Process is made up of 5 threads. The first thread, labeled Gateway, is

the main thread. Its job is to allocate and start everything, wait for the other threads to

exit, and clean everything up. UartRX’s only job is to wait until an interrupt occurs, and

then it reads characters from UART, and sends them to the XBee Parser thread, and

continues to do this until no characters are coming from the UART. The XBee parser

takes the characters from the UART and parses them to get the payload. It will then

Commuter Tracking Sensor Net 68

perform an HTTP Post request based on the payload data to the HTTP Server

thread. The HTTP Server thread will then ensure the data is correct, and if it is, create

an event based on the data and add it to the event queue thread. The event queue will

then execute the event. In the event that a client (such as a cron job) posts directly to

the http server, the same process happens, but nothing occurs with the XBee parser or

UART threads.

Commuter Tracking Sensor Net 69

Database

The database is implemented using MariaDB, which is a drop-and-replace of

MySQL. There are three main parts of the database. The first part is stuff that Django

automatically creates for it to function. This is created automatically when Django is

synced with the database. The schema for it can seen below in Figure 52. The only

table that was created custom was the ctsn_user table, which stores data the Django

user table does not have, but must be tied to a user, such as a phone number.

Figure 52 - Django Database Schema

The second part of the database was for Django plugins. Plugins were added to the

Django framework for security purposes. Some plugins include a CAPTCHA so bots

can’t brute force their way in, a plugin that edits robots.txt to block incoming bots, and a

way to block an IP address after a certain number of failed login attempts. These

database tables were also created automatically, and are shown in figure 53.

Commuter Tracking Sensor Net 70

Figure 53- Django Plugin Database Schema

The last piece of the database were tables that handle the trail data. The schema is

shown below in figure 54, and what each table represents is in table 4.

Commuter Tracking Sensor Net 71

Figure 54- CTSN Trail Schema

Note, for space reasons, the schema picture was cut in half and placed in two rows.

Commuter Tracking Sensor Net 72

Table 4 - CTSN Trail Database Table Description

Table
Name

Description

Trail Result
Type

The different types of pedestrian targets the trail can detect. For
example, “horse”, “walker”, and “biker” are stored as rows in here.

Trail Result When a trail detects a pedestrian, a row gets added here. Each row
contains the type of pedestrian, the time at which the detection
occurred, and the node from which the result came from.

Node Each row in this table represents a node on the trail. Each row
contains the latitude and longitude of the node, its status, the mac
address, and a timestamp of when the last status update occurred.

Node
Status

A list of possible node statuses. Some statuses include “okay”,
“offline”, or “battery critical”.

Error
Messages

A list of possible error messages that can occur.

Error Log This table stores all of the errors that occurred in the system and when.

Website
Status

Possible statuses of the website. These include “okay”, “maintenance”,
or “down”.

Website A list of all the websites in the system and their status. Useful in case
there is more than one frontend.

Status
Severity

For each status, there is a corresponding severity such as “Okay”,
“Minor”, or “Critical”. This table lists these.

Commuter Tracking Sensor Net 73

User Interface and Controls

The Django web framework is used to implement the sensor network website. Django

uses the Python programming language along with an HTML/Python hybrid templating

language, and allows for the user to import CSS, external and internal media, and

JavaScript. A user interface was developed that allow users to access the database end

of the sensor network through the Raspberry Pi’s web server. Django allows for an

Apache server connection, and also interfaces with several database formats, such as

MariaDB, which provides all of the necessary features for our project within a relatively

small footprint.

The web interface allows access to two user groups, user and admin. The standard user

has the ability to view sensor node information, and to view accumulated data as it is

received. This information can be filtered on a per node basis. Accumulated data from the

entire network can also be viewed all at once. The standard user will also be able to view

each node’s status such as if the node is down or needs a battery change.

Admins can view everything a standard use can view. In addition, admins can add or

remove users and nodes from the database, turn nodes off, put the website in

maintenance mode, or view error messages from the trail. When a node is not “online” or

a sensor is processing an alert, such as a battery getting low, the node sends a message

to the gateway node. These messages are accumulated in a message center for the

admin to view when desired. Messages will also be sent via email and text to the

administrator’s provided account. The admin will eventually also have the option to power

down a node remotely. All information from the database (within reason) can be removed

or modified by the admin.

Figures 55 - 60 are screenshots of the website:

Commuter Tracking Sensor Net 74

Figure 55 - Home page

Figure 55 shows the homepage of the website. It will show a welcome message, and

has buttons that go to the other pages. In the upper right corner, there is a status of the

gateway node, and the overall trail status. The overall trail status shows the “worst”

status of all the trail nodes. In this case, one trail node has an “unknown” status, so it

displays “unknown”. The admin link is only viewable and accessible to users with admin

level access.

Commuter Tracking Sensor Net 75

Figure 56 - Status page

Figure 56 shows the page that tracks the status of each of the nodes, with each node

being a blue marker on an interactive map. Clicking on one of these markers will

produce more specific information of the node in a popup bubble. For example, node 1

is selected in the interactive map, and it shows the Node ID, name, and the

stats. Below the map is a table of each of the nodes. The table is here just in case the

user does not have a JavaScript-enabled browser, they can still view the data. The

Gateway and Trail node status shown on the homepage is still on this page, but cut off

so the screenshot could fit.

Commuter Tracking Sensor Net 76

Figure 57 - Statistics Page

Figure 57 is the page where the user will go to get the usage data. As in the status view

(Figure 56), each node is represented by a clickable marker. The user can click on any

node to get specific statistics of a node, or scroll down to the table to see the total of

entities viewed per node, or the total of each type of pedestrian. The Gateway and Trail

node status shown on the homepage is still on this page, but cut off so the screenshot

could fit.

Commuter Tracking Sensor Net 77

Figure 58 - Admin message center

Figure 58 shows the admin message center. This is only viewable to admins. It shows

all important messages that developers or maintainers need to know. Each message is

color-coordinated by its severity. The Gateway and Trail node status shown on the

homepage is still on this page, but cut off so the screenshot could fit.

Commuter Tracking Sensor Net 78

Figure 59 - Admin Add/Remove User View

Figure 59 shows the view associated with the Admin user account that allows an

administrator to reset the password or change the user account privileges for any stored

account. This is automatically provided by Django. A similar page is used to add or

remove nodes from the system as well.

Commuter Tracking Sensor Net 79

Figure 60 - Admin Maintenance View

Figure 60 shows the maintenance view associated with the admin user group. A future

iteration of the project will allow the admins to actually power cycle a node when the

“turn off” button is pressed. Right now, nothing happens when clicked. Admins can

enable or disable website maintenance mode from this page. When in maintenance

mode, the website is not accessible by anyone other than administrators. The Gateway

and Trail node status shown on the homepage is still on this page, but cut off so the

screenshot could fit.

Commuter Tracking Sensor Net 80

For each of the interactive map UIs, a library called Leaflet.JS was used to put the

markers on the map. Leaflet.js allows the user to zoom in and out and move the map

around. OpenStreetMap is used as the base map.

Commuter Tracking Sensor Net 81

Engineering Standards

 C/C++

o Both C and C++ are standardized by the International Standards

Organization. C and C++ will be used to program the Pixy Cameras, and

can also be used in the gateway node to read in data from the trail nodes,

and write it to the database.

 Hypertext Transfer Protocol (HTTP)

o When a client tries the access the website, they will be using HTTP “get”

and “post” requests. Django will handle the HTTP the requests, and return

a webpage to the user. HTTP is also used as a form of interprocess

communication inside of the gateway node so separate processes can talk

to each other.

 Portable Operating System Interface (POSIX)

o The Raspberry Pi used for the server and gateway will be running Linux,

which is a “mostly-POSIX compliant” computing platform.

 ZigBee

o ZigBee is a communication protocol for radio modules. The Digi XBee is

based off on the ZigBee specification.

 Universal Asynchronous Receiver/Transmitter (UART)

o UART is used for transmitting serial data. UART will be used to send or

receive data between the MCUs and the XBee radio modules that need to

be sent out or are received from the mesh network.

There are currently no industry or engineering standards for vision systems, and

algorithms can be changed as desired to increase overall system performance.

Commuter Tracking Sensor Net 82

Multidisciplinary Aspects

 Electrical Engineering

o Needed to design and build the hardware associated with the signal

conditioning circuit, and to interface AC with DC.

 Computer Engineering

o Needed to program digital components such as the image processor, image

sensor, and boost converter.

 Computer Engineering Technology

o Needed to complete PCB design and implementation.

 Software Engineering / Computer Science

o Write software for recognizing the mode of transportation of the person who

walked in front of the node.

o Write software to save all data to a database.

o Write software so the nodes can communicate with each other.

 Mechanical Engineering

o Build a housing to protect the nodes from the weather.

o Design and build the windbelt for the trickle-charger.

Commuter Tracking Sensor Net 83

Background

For this project, several classes offered at RIT will be of use.

 Data Communications

o Gives knowledge of networking, which may be important for setting up the

nodes to be in a network.

 Interface and Digital Electronics

o Gives knowledge on how to use analog filter, which is used in the windbelt.

 Computer Science 1 and 2

o Gives knowledge on computer programming, design patterns and data

structures with Python.

 Computer Science 4, Applied Programming

o Gives knowledge on how to write code in C and C++, which is how the MCU

and the gateway process is programmed.

 Web I

o Gives knowledge on how to design a static website using HTML and CSS.

 Intro to Software Engineering

o Gives knowledge on how to build a website using the Django web

framework.

o Gives knowledge on how to communicate with a database through a

website.

 In addition, some independent research was performed on EAGLE PCB design

and fabrication in order to complete the battery management module.

Commuter Tracking Sensor Net 84

Outside Contributors

 Dr. Jeff Wagner

o Professor in the RIT Department of Economics. The requirements

specification were based to support Dr. Wagner’s research in the area of

benefits transfer analysis.

 Stanley Chan and Jared Stroud

o Security majors at RIT. They penetration tested the server and the website

and reported any vulnerabilities they found, along with ways to fix them.

 Nick Conn

o Assisted with soldering by providing a temperature controlled toaster oven

that was modified for reflow purposes, and for assistance with Eagle.

 Jeff Lonneville

o Allowed access to Surface Mount Technology Facilities and assistance

and instruction on how to use equipment.

Commuter Tracking Sensor Net 85

Constraints / Considerations

Sustainability - Since the nodes will be operating far away from any potential power

source, a low current source must be provided through use of wind energy. Nodes will be

precharged, and the trickle charge provided to them by the windbelts will merely be a way

in which the pre-existing charge will be maintained for a longer period of time. Therefore,

the nodes will all be operating within a variable time constraint, and the Li-Ion batteries

will require a manual recharge when this period expires. The time constraint will fluctuate

dependent on the amount of wind that is converted to energy within a given time period.

During windier periods, the nodes will remain in deployment for longer, and during periods

of less wind nodes will need to be manually recharged more frequently. Power

management algorithms will also be employed on the device to minimize the amount of

power being used by the microcontroller and associated peripherals during periods of low

charge. Ideally, the windbelts combined with effective power conditioning and

management should significantly lengthen the deployment period of the devices.

Ethical/Privacy - The nodes will be recording the people walking by them. This makes

the privacy of the people on the trail a consideration. With this in mind, the nodes will not

save any photos of the trail users unless explicit approval of the trail owners has been

provided. Nodes will function solely to determine the person’s mode of transportation,

and send statistical data through the gateway node to the cloud server.

Property Rights/Political - Another consideration is whether or not the network can

actually be deployed on the trail. The owners of the trail will need to be notified, and

proper permissions will need to be obtained to perform research within the 15 mile stretch

of trail.

Ethical/Privacy - It should also be considered as to who has access to the collected data.

It could be a confined group of people performing research and development for

debugging and statistical use, town personnel could also have access to it, or all the

information could be available to the public. Access level should also be changed

throughout the course of development to deployment.

Commuter Tracking Sensor Net 86

Extensibility - The modules should be able to be repurposed for a variety of analog tasks.

The basic platform is being adapted to the current application of collecting trail usage data

for the Lehigh Valley Trail, but a variety of analogous applications can be imagined:

wildlife data collection, agricultural data collection, etc. The modules need to be

developed with this kind of flexibility in mind. The same needs to be considered for the

database backend; it too will need to be flexible so as to be able to adapt it to other

applications.

Manufacturability - The modules are fairly complicated in both the number of systems

and their integration. This was one of the considerations that caused us to choose the

Pixy sensor over developing our own unit. Manufacturing should be off loaded onto

specialist partners as much as possible. We think we have done that to a high efficiency

with our component selection.

Reliability - This is a strong consideration as we are using the network for data collection.

We need to show that the modules will reliably capture the required information and that

that data will make it to the database backend. We hope to have full redundancy for the

wireless network across the nodes to increase reliability.

Environmental - There is a small chance that the battery may explode, causing a

fire. The enclosure for the nodes should be designed to prevent the fire from spreading

by making it fire retardant.

Commuter Tracking Sensor Net 87

Cost

The table below shows cost for the project. This table shows the price of 5 trail nodes

(for a proof concept), each with its own power system, camera, and wind belt, and one

gateway node.

Table 5 - Bill of Materials

Part Part Name Price

Our
Price Quantity

Total
Price Source

Li-Ion

Battery
Tenergy Li-Ion 3.7V

15600mAh $40.49 $40.49 5 $202.45 All-Battery

Schottky
Diodes

1SS389(TL3,F,D)

High Speed 0.23V VF $0.16 $0.00 5 $0.00

CE
Department

Resistors,
Capacitors,
Inductors -- $12.61 $12.61 5 $63.05

Mouse and
Coilcraft

Boost
Converter bq25504 $6.17 $0.00 5 $0.00 Mouser

Buck
Converter

EVM tps62740 EVM $49.00 $0.00 5 $0.00

Texas
Instruments

Boost
Converter

EVM tps61032 EVM $49.00 $0.00 5 $0.00

Texas
Instruments

Windbelt
Frame and

components -- $20.00 $20.00 5 $100.00

Built From
Wood

Magnet -- $1.00 $1.00 5 $5.00

Home
Depot

Windbelt Coil -- $5.00 $5.00 1 $5.00

Home
Depot

Commuter Tracking Sensor Net 88

PCB -- $8.00 $8.00 5 $40.00 OSH Park

Radio Module XBP9B-DMST-002 $39.00 $39.00 6 $234.00 Mouser

Camera
Board Pixy Board $75.00 $75.00 5 $375.00

Charmed
Labs

Antenna ANT-ELE-S01-005 $3.15 $3.15 5 $15.75 Mouser

Web server /
Gateway Raspberry Pi $35.00 $0.00 2 $0.00

Group
Members

Wired Router - $30.00 $0.00 1 $0.00

Group
Members

Ethernet
Cables - $6.00 $0.00 4 $0.00

Group
Members

XBee
Breakout

992-XBEE-USB

XBee-USB $27.92 $27.92 1 $27.92 Mouser

Infrared
Sensor ZEPIR0AxS02MODG $10.80 $10.80 5 $54.00 DigiKey

Total
Price: $1,122.17

Commuter Tracking Sensor Net 89

Testing

Signal Acquisition and Conditioning

Testing of the power acquisition and conditioning circuit involves five phases as shown in

Table 1. Phase 1, early testing, involves varying the length of the windbelt to maximize

AC current production and minimize length. Subsequent tests of the early stage involve

varying fan speed and the angle at which wind is applied.

(Warning: All Lithium-Ion battery testing MUST be accomplished with the battery

in plain sight prior to remotely testing. Li-Ion batteries can become highly unstable

if charging conditions are less than nominal.)

Table 6 - Signal Acquisition Test Descriptors

Test
ID

Phase -Component Description Pass Condition Outcome

P.1 Early - Windbelt
Component

Vary length
of the belt
and measure
AC voltage
peak-peak
using an
oscilloscope.

AC current production
is at a maximum, size
of windbelt is at a
minimum.

The size of
the windbelt
was larger
than
expected, but
2VAC was
generated
consistently.

P.2 Early - Windbelt
Component

Vary fan
speed and
measure AC
voltage using
oscilloscope.

AC current production
is maximized.

Lowering fan
speed
surprisingly
did not have
a large effect
on voltage
generated.
Outdoor
testing saw
the same
numbers as
indoor.

P.3 Early - Windbelt
Component

Vary the
angle at

AC current production
is maximized.

Angle has a
large effect

Commuter Tracking Sensor Net 90

which the
optimal wind
speed is
applied and
measure AC
voltage.

on voltage
generated.
When
outdoors, the
randomness
of the angle
serves to
normalize
output.

P.4 Intermediate I -
AC/DC Rectification
Component

Connect
optimal
design from
early testing
phase to
half-wave
rectifier
circuit.
(Requires
completion
of windbelt.)

Smoothing levels are
adequate, and levels
are held at 80% or
higher of 3.3V with
minimum fall time.

Although 3.3
V was not
achieved, 1.2
VDC proved to
be adequate
voltage for
the boost
converter to
operate.

P.5 Intermediate I -
AC/DC Rectification
Component

Connect
optimal
design from
early testing
phase to full-
wave rectifier
circuit.
(Requires
completion
of windbelt.)

Smoothing levels are
adequate, and levels
are held at 85% or
higher of 3.3V with
minimum fall time.

A full-wave
rectifier was
decided
against, due
to a larger
voltage drop
and higher
cost and
complexity.

P.6 Intermediate II -
Primary Boost
Converter Compone
nt

Connect
output of
rectifier to
boost
converter at
VIN_DC port
(pin 2).
Measure
output of
boost
controller at
VSTOR (pin
15) using an

Measure voltage levels
at output over
elongated periods of
time. Levels should not
exceed those allowable
by the battery (4.2V).
Observe and track the
DC output signal as it
fluctuates over time to
determine whether
MPPT is necessary.
Verify that the boost
controller remains on

The boost
converter
was not
tested for a
configuration
where MPPT
was not
enabled. This
was
considered a
waste of
time, since
MPPT is a

Commuter Tracking Sensor Net 91

oscilloscope
(Requires
completion
of custom
PCB power
management
module.)
When
running
without
MPPT,
reference
Figure 4 in
the bq25504
technical
document for
the proper
port
configuration
.

during harvesting
periods.

very powerful
feature of the
device.
With MPPT
enabled, the
boost
converter
provided
levels that
were safe for
the battery,
never
exceeding
4.2 V or
dropping
below 3.1 V.

P.7 Intermediate II
- Lithium Ion Battery
Component

Manually
charge the
Li-Ion battery
at the
specified
voltage for a
nominal
charge
period.
Measure the
output
voltage with
a multimeter.
(May be
done in an
automated
fashion as
well.)

Measure voltage levels
of the battery
periodically until it is
determined that the
battery has fully
discharged. Record the
time it took for the
battery to discharge.

The battery
was attached
to the boost
converter and
allowed to
discharge to
the under-
voltage level.
At this point,
the boost
converter
automatically
cut power,
and the
battery was
disconnected
.

P.8 Intermediate II -
Voltage Regulation
Component

Connect fully
charged Li-
Ion battery to
voltage
regulator on
custom PCB.

Measure voltage levels
at both ports to ensure
that 3.3 V is being
provided to the XBee
and 3.7 V is being
provided to the second

The battery
reads 4.2 V
when fully
charged, and
about 3.5 V
when

Commuter Tracking Sensor Net 92

Test DC
output with
multimeter at
both outputs.
(Should be
completed
after battery
testing)

boost converter (5 V
out).

discharged to
the point that
the boost
converter
shuts down.
During
operating
periods, the
buck
converter
reads 3.3 V
and the
secondary
boost reads 5
V.

P.9 Intermediate II -
Secondary

Boost Converter
Component

Connect 3.7
V pin to
secondary
boost
converter
and measure
voltage at
the output
using a
multimeter.
Do not
configure
MPPT yet.
(Not sure
which boost
converter will
be used yet)

Measure voltage levels
at the output of the
boost converter.
Output should be 5V to
adequately supply the
Cortex processors.
Observe the output
over time to determine
whether MPPT is
required at the
secondary boost
converter level.

MPPT is
required to
operate the
circuit more
efficiently.
5 V was
supplied to
the camera
module,
regardless of
input voltage
from the
battery
management
solution.

P.10 Advanced I -
Primary

Boost Converter
Component

Connect the
battery to the
boost
converter as
shown in
Figure 4 of
the bq25504
technical
document.
Measure
duration and
level of

Battery duration,
charge level and output
should be within 20%
of the measured
discharge period of the
battery when
measured separately.
Compare discharge
rate with those of the
battery without the
sustainable energy
source.

It was
determined
that running
the boost
converter
without
MPPT was
inefficient
and
impractical
for use with a
battery

Commuter Tracking Sensor Net 93

charge
without
MPPT
enabled
across the
terminals of
the battery
and at pin
15. (Should
be
completed
after battery
testing. Do
not leave the
battery
unattended!)

management
application.
This test was
not
performed.

P.11 Advanced I -
Primary

Boost Converter
Component

Configure
the boost
converter as
shown in
Figure 2 of
the bq25504
technical
document.
Measure
duration and
level of
charge with
MPPT
enabled for a
solar energy
application
with the Li-
Ion battery
attached.
(Should be
completed
after battery
testing. Do
not leave the
battery
unattended!)

Battery duration,
charge level and output
should be within 20%
as above for elongated
periods. Compare
discharge rates with
those of the battery
without the sustainable
energy source, and
with the source but
without MPPT.

This test was
completed for
a windbelt
application.
The
intermediate
step was not
necessary.
Discharge
rates were
determined
acceptable
for the
application.
Adding the
sustainable
source
elongated the
battery life by
about 2 hours
over a 24
hour period.

P.12 Advanced I -
Secondary

Configure
the boost

Measure voltage at the
output over elongated

The signal
was

Commuter Tracking Sensor Net 94

Boost Converter
Component

converter for
use with
MPPT and
measure the
output of the
converter
using a
multimeter.
(Should be
completed
after non-
MPPT
testing if
required)

periods to ensure that
the signal provided is 5
V, and that adding
MPPT further stabilizes
the signal for use with
the MCU.

measured at
5 V
regardless of
the input
voltage to the
boost
converter
when MPPT
is enabled.

P.13 Advanced II -
Secondary Boost
Converter
Component

Configure
the boost
converter for
use with
MPPT and
connect the
M0 and M4
processors.
Measure
voltage at
the output
using a
multimeter.
(Should be
completed
after MPPT
testing
without
load.)

Measure voltage at the
output over elongated
periods to ensure that
the signal provided is 5
V.

Although
voltage level
drops at the
output of the
boost
converter
when the
camera
module is
connected by
about 0.35 V,
the
secondary
boost
converter still
reads 5 V at
the output.

P.14 Advanced II -
Integration with
Focus on Signal
Acquisition

Deploy a
single node
in a
controlled
environment
and monitor
power
conditions
closely.
(Should be
completed

Measure voltage
levels, battery duration
and charge throughout
the elongated period,
and confirm that CV
algorithms, networking,
and all power
dependent subsystems
are fully-functional.

This was not
completed
since CV was
not functional
on the
embedded
camera.
Bursts of
1000 packets
were sent to
test the radio

Commuter Tracking Sensor Net 95

after all other
component
testing.)

functionality,
and the
ability of the
buck
converter to
provide
current to the
radio. This
was
successful
during a 4
hour testing
period.

P.15 Advanced II -
Integration with
Focus on Signal
Acquisition

Deploy a
single node
in an outdoor
environment.
Allow node
to operate
without
intervention
and monitor
conditions
remotely.
(Should be
completed
after
controlled
integration
testing.)

Measure voltage
levels, battery duration
and charge throughout
the elongated period,
and confirm that CV
algorithms, networking,
and all power
dependent subsystems
are fully-functional.

With both the
camera
module and
radio
connected to
the power
module, the
node stayed
powered on
for
approximatel
y 24 hours.
CV was not
functioning at
the time, but
TX tests were
run.

P.16 Advanced III -
Acceptance with
Focus on Power
Management
Requirements

Deploy
multiple (3-4)
nodes in an
outdoor
environment.
Allow node
to operate
without
intervention
and monitor
conditions
remotely.
(Should be
completed

Measure voltage
levels, battery duration
and charge throughout
the elongated period,
and confirm that CV
algorithms, networking,
and all power
dependent subsystems
are fully-functional.

This was not
completed,
as CV was
not fully
functional on
the cameras
that the
power
module was
characterized
for.

Commuter Tracking Sensor Net 96

after
controlled
and single-
node
integration
testing.)

Intermediate testing focused on continuing testing with the optimized design chosen from

phase 1. The rectifier circuit was connected to the windbelt, and smoothing and fall time

were optimized. For the second intermediate phase, the focus was on providing safe

levels at the output of the boost converter with the MCU connected to a non-battery power

source.

Advanced testing allowed for connection of the battery and MCU to the boost converter

and deployment in an outdoor environment. Battery voltage levels, duration, and charge

levels will be measured for as long as the battery maintains its charge. Once components

are proven fully functional, the signal acquisition system will be tested as a whole in a

controlled testing environment. Acceptance testing was performed in the field, with less

distance between nodes for easy maintenance and monitoring prior to actual deployment

on the Lehigh Valley Trail. Tests were run to ensure that all power-dependent

requirements were satisfied after integration level testing was completed.

Commuter Tracking Sensor Net 97

Computer Vision Testing

The CV was not tested extensively before this iteration ended. The Pi Cam was able to

detect pedestrians in a lab setting, but that’s it. For the next iteration, the tests described

below will be performed.

To test the software algorithm that determines what walks by a node, the nodes can be

set up in a controlled environment, such as inside of a lab. A person can then walk by

with or without a bike, and the node should be able to identify if the person is walking or

riding a bike. The subject should walk past the node at various speeds, and the node

should still be able to make a capture. The node should be able to pass captured

information to the rest of the nodes, and to the gateway so it can be recorded by the

database.

Various lighting scenarios should be tested as well. In a lab environment, the lighting

should be adjusted so it gets dimmer until the node is unable to make accurate

readings. This will be the minimum light needed for operation, and the node might not

require frames to be captured at times like this in the field. During the lab test, a light

should be positioned at various angles, such as behind the node shining on the target,

behind the target shining on the node, overhead, and to the left and right of the

node. Regardless of where the light is positioned, the node should still operate

accurately.

When the node is built, and the software written, a stress test that can be performed is to

deploy the nodes on the RIT quarter mile, which gets a lot of foot traffic. This test will

also show just how accurate and fast a node is. If the node just cannot keep up with the

traffic, some redesigning might need to occur.

Table 7 - Computer Vision Test Descriptors

Test
ID

Phase Description Pass Condition

V.1 Early - Image
Sensor
Component

Verify that the image sensor
is correctly capturing
images by connecting the

Images in front of the lens are
rendered correctly in the Pixy
Cam GUI window. It can be

Commuter Tracking Sensor Net 98

Pixy Cam via USB, loading
the GUI and observing.

assumed that the M0 is
functioning correctly.

V.2 Early - Image
Sensor
Component

Verify that the image sensor
is correctly identifying colors
by running the included
color identification
algorithms with the board
connected via USB

The chosen color is amplified
in processed images, as
shown in the Pixy Cam GUI
window. It can be assumed
that the M0 is functioning
correctly.

V.3 Intermediate -
Infrared
Component

Connect the board via USB
and connect an Infrared
sensor to the camera via
GPIO or UART. Dim the
room of all light sources.
Verify that the sensor data
are correctly displayed in
the Pixy Cam GUI window
by walking in front of the
camera and observing..

The image should be correctly
represented with more orange
to red colors showing higher
temperatures. The
background should contain
blue and purple colors for
lower temperatures.

V.4 Intermediate -
CV Algorithm
Component

Compile and load the CV
software onto the Pixy Cam.
Walk by the Pixy Cam to
verify whether the algorithm
is functioning properly.
(To be tested with and
without Infrared sensor
connected.)

The image should be
identified, and the correct CV
size capture, speed and
direction determinations are
made.

V.5 Intermediate -
CV Algorithm
Component

Vary speeds at which the
subject walks by the Pixy
Cam to verify that the
algorithm still functions
properly.
(To be tested with and
without Infrared sensor
connected.)

The image should be
identified and the correct CV
size capture, speed and
direction determinations are
made.

V.6 Advanced -
CV Algorithm
Component

Walk by the Pixy Cam with
a bike or other large object
to verify that the algorithm
still functions properly.
(To be tested with and
without Infrared sensor
connected.)

The CV algorithm is able to
correctly discern between a
walking and biking commuter
based on speed of the
individual, and the correct
output displays in the GUI.

Commuter Tracking Sensor Net 99

V.7 Advanced - CV
Algorithm and
Infrared
Component
Integration

Compile and load the CV
software onto the Pixy Cam.
Dim the lights in the room.
Walk by the Pixy Cam to
verify whether the CV
algorithm is functioning
properly.
(To be tested after CV and
IR component tests pass.)

The algorithm should be able
to use the Infrared data with
the lights dimmed to
accurately detect size,
direction and speed of an
individual.

V.8 Advanced -
Computer
Vision and
Networking
System Level
Integration

Compile and load the CV
software onto the Pixy Cam.
Connect the cam via USB.
Connect the PixyCam to the
XBee as well via GPIO or
UART header and provide
power to it via pre-charged
Li-Ion battery connected to
custom voltage regulation
unit. Dim the lights in the
room. Walk by the Pixy
Cam to verify whether the
CV algorithm is functioning
properly. Turn on the lights
and perform the same tests.
(To be tested after CV, IR,
voltage regulation and
GPIO component tests
pass. The website GUI
should also be operational,
but data can alternatively be
viewed through local GUI.)

The algorithm should be able
to use the Infrared data with
the lights dimmed to
accurately detect size,
direction and speed of an
individual. The algorithm
should also work with lights
on. These data should be
broadcasted to a central node,
server, and pushed to a
website to view for
confirmation.

V.9 Advanced -
Computer
Vision and
Power
Management
System Level
Integration

Compile and load the CV
software onto the Pixy Cam.
Connect the PixyCam to the
secondary boost converter.
(Warning: Do not perform
this step until component
level testing of the
secondary boost converter
is complete.)
Connect the PixyCam to the
XBee as well via GPIO or
UART header and provide
power to it via pre-charged

The algorithm should be able
to use the Infrared data with
the lights dimmed to
accurately detect size,
direction and speed of an
individual. The algorithm
should also work with lights
on. This data should be
broadcasted to a central node,
server, and pushed to a
website to view for
confirmation.

Commuter Tracking Sensor Net 100

Li-Ion battery connected to
custom voltage regulation
unit. Leave out everything
prior to the battery in the
Signal Conditioning circuit.

Walk by the Pixy Cam to
verify whether the CV
algorithm is functioning
properly. Turn on the lights
and perform the same tests.

V.10 Advanced -
Computer
Vision
Acceptance
Testing

Compile and load the CV
software onto the Pixy Cam.
Connect the PixyCam to the
secondary boost converter.
(Warning: Do not perform
this step until component
level testing of the
secondary boost converter
is complete.)
Connect the PixyCam to the
XBee as well via GPIO or
UART header and provide
power to it via pre-charged
Li-Ion battery connected to
custom voltage regulation
unit and add signal
acquisition and conditioning
circuit including primary
boost converter, rectifier,
and windbelt.

Walk by the Pixy Cam to
verify whether the CV
algorithm is functioning
properly. Turn on the lights
and perform the same tests.
Vary size of CV subjects.
(Perform this test after
System level integration is
complete for each system
involved.)

The algorithm should be able
to use the Infrared data with
the lights dimmed to
accurately detect size,
direction and speed of an
individual. The algorithm
should also work with lights
on. This data should be
broadcasted to a central node,
server, and pushed to a
website to view for
confirmation.

Extended testing should be
performed at this level once
all system level and
integration is complete. The
node should be able to
process CV algorithms for an
extended period with
sustainable energy available.

Commuter Tracking Sensor Net 101

Enclosure testing

The node will be deployed outside in Rochester’s infamously bad weather. Therefore,

testing to ensure the node remains intact in extreme weather needs to occur once the

weather-proof chamber is completed. Since the enclosure was only recently completed,

these tests were not performed in this iteration.

Table 8 - Enclosure Test Descriptors

Test

Test Name Description Reason Pass Condition

E.1 Temperature
Test

The nodes should be
placed in a cold
environment to
simulate Rochester’s
winter, and a hot
environment to
simulate Rochester’s
summer.

Rochester has a
variety of weather
conditions that can
range to several
degrees below
zero, and up to
almost 100
degrees. The
nodes will be
outside during
these times, and
should be able to
survive in them.

If all the node’s
hardware still
works after being
in the extreme
environments,
the test passes.

E.2 Rain Test Water can be sprayed
on the enclosure to
simulate rain, and a
powerful fan can be
used to simulate
consistent wind. For
these tests, paper
towels or some kind of
other material that
reacts to water should
be placed inside the
enclosure instead of
the expensive
hardware. This way, if
water does manage to
get in, no hardware is
damaged.

Rochester can
have days of rain
in a row. The
housing needs to
be able to keep the
water out at all
costs, otherwise
the hardware might
get fried.

If no water gets
into the
enclosure, the
test passes.

Commuter Tracking Sensor Net 102

E.3 Drop Test There should be a drop
test of 5-6 feet to
ensure that the trail
node’s enclosure is
sturdy enough to
protect the hardware
inside. This can be
done by placing a raw
egg, or something else
cheap and easily
breakable, in the
enclosure instead of
the expensive
hardware.

It is possible that
while deploying the
nodes, they could
be dropped. The
enclosure should
protect the
hardware from
drops.

If the egg cracks
when being
dropped, then
the enclosure is
not sturdy
enough, but if
the egg is intact,
the the test
passes.

E.4 Fire test Pack flammable
materials inside of the
enclosure and set fire
to it (with a fire
extinguisher nearby).

There is a chance
that the battery can
catch fire. To
prevent a forest
fire, the enclosure
should be able to
contain any fire
that may occur
from the inside.

If the fire stays
contained within
the enclosure,
the test passes.

Commuter Tracking Sensor Net 103

Network Architecture Testing

It is essential that all the nodes are able to communicate with each other over a long

distance. To ensure that all the nodes will be communicating with each other through the

XBees, the following tests can be done:

1) The first test that should be performed is a small scale test to ensure that the XBees

are able to be configured through UART and send messages via the DigiMesh

protocol. This test should be performed once the XBees are acquired.

a) Acquire 4 XBees.

b) Attach the 4 XBees to either Raspberry Pis or the Pixy Cam through UART. A

mixture of Pis and Pixy Cams is preferred, as the Pixy Cam will be the MCU for

the trail nodes, and the Pi will eventually act as the gateway node.

c) Ensure the XBees can be configured through UART. If they are unable to be

configured, then the XBee Development kit might need to be purchased in order

to program the XBees.

d) Ensure the XBees can send and receive messages from each other. If they are

able to, then the XBee Development Kit is not needed.

e) For this test, the XBees can be in close proximity with each other. Test 3 increases

the distance.

 Test 1 passed. After the XBees were configured, and the packet forming and parsing

software was written, the XBees did exactly what was advertised. The programming was

easy thanks to Digi’s XCTU software. The XBees were able to send and receive

messages to each other, as well as broadcast a message to all XBees.

2) The second test that should be performed is a test to see how far away the XBees are

able to communicate with the selected antenna. This should be done once the

previous test passes.

a) Create 2 nodes by connecting an XBee to either a Pi or a Pixy Cam through UART.

b) Make one node stationary, and take the other node and go as far away from the

stationary node as possible before communication cuts out.

Commuter Tracking Sensor Net 104

c) The biggest distance between two nodes on the trail is about 1.75 miles, so the

XBees should be able to communicate with each other from at least 2 miles apart.

d) If this test fails, then a more powerful antenna needs to be purchased.

e) Preferably, the test should be performed on the trail itself, as that is where the

nodes will eventually be placed.

 Test 2 failed. It was done by connecting a stationary XBee to a power supply on

campus, and another was connected via laptop and was walked around campus. Digi’s

XCTU software was running on it, and an XBee was connected via USB. The XCTU

software could connect to the stationary XBee if it was in range. The maximum range on

campus was only a couple hundred yards. The good news is this matches the XBee’s

documentation for urban or indoor environments. So in theory, when brought into an

open environment such as the trail, the range should increase dramatically. If not, more

powerful antennas are needed.

3) The final test is a small scale trail test. This is where a subset of the trail has nodes

deployed to it. If this test passes, then it is probably safe to purchase more nodes and

cover the entire trail. This test can be performed when the last test passes.

a) Attach 4 XBees to either Raspberry-Pis or Pixy Cams.

b) Deploy 4 nodes at positions 17, 2, 3, and 4 (referring to Figure 2). These four

positions are the most spread apart spots on the trail.

c) If all the nodes can communicate with each other, then the test passes, and it is

probably safe to scale up to cover the whole trail.

d) If the test fails, then some of the nodes might need a more powerful antenna.

 Since test 2 failed, this one was never performed.

Commuter Tracking Sensor Net 105

Server Security Testing

Once the Raspberry-Pi server and all security implementation is in place, an attempt

was made to take control of the server from an outside source using DDOS, SQL

injection and brute forcing.

Table 9 - Server Security Test Descriptors

Test

Test
Name

Description Reason Pass
Condition

Outcome

S.1 Ping test The router
should not
be pingable
from an
outside
source.

When many
people try to ping
a server, it could
create a DDOS
attack. Therefore
, pinging should
be removed to
prevent this from
happening.

Trying to ping
the router from
outside the
network should
not work.

Since the
server was
located on
RIT’s
campus, this
test passes
automatically
since
someone
cannot ping
rit.edu.

S.2 Disable
Root
Login

While
SSHing into
the server,
users should
not be able
to login as
root

Root is all
knowing in
Linux. If
someone were to
somehow gain
access to root,
they could wreak
havoc on the
server.

Trying to login
as root results
in an access
denied.

Pass. Trying
to login as
root fails.

S.3 SSH
non-
standard
port test

While trying
to SSH into
the server
using the
default SSH
port, the
result should
be not being
able to
connect.

By moving the
SSH port to a
non-standard
port, it makes it
difficult for some
hackers to find
the SSH port, and
try brute forcing.

Trying to login
to port 22 via
SSH will
fail. Trying to
login to the non-
standard port
will succeed.

Pass. Trying
port 22 fails.

Commuter Tracking Sensor Net 106

S.4 Disabled
Passwor
d Test

Trying to
login with
SSH will
have an
access
denied
without an
SSH
key. SSHin
g will not be
allowed
without a
password.

SSHing with a
user name and a
password is not
safe for a
server. A hacker
can brute force
their way in.

SSHing into a
server without a
key will result in
an access
denied. SSHin
g will not ask for
a password.

Pass. A key
is required to
login to the
server.

S.5 White
hat
hacker
test

Borrow one
of the many
security
majors the
group
knows, give
them the IP
address,
and have
them
attempt to
take the
server down.

Having a friendly
hacker attempt to
break into the
server will
emulate a more
sinister hacker
trying to get in. If
any information is
compromised by
the friendly
hacker, they will
not steal it.

The hackers
should not be
able to take the
server down.

Pass. Two
security
majors tried
to hack the
server. They
even
complimente
d on how
secure it was.

Commuter Tracking Sensor Net 107

Website Testing

The website is the gateway to the data. However, it can also be a gateway for a hacker

wreak havoc. These tests will confirm that anyone with dark intentions will not be able

to compromise the server from the website.

Table 10 - Website Test Descriptors

Test

Test
Name

Description Reason Pass
Condition

Outcome

W.1 Sanitation
Test

Data from the
website is sent
to the server via
http get and
post
requests. Some
commands sent
that could break
the server
include “; && rm
-rf /” and “drop
table *;”. These
commands
should break the
server.

If the data are not
“sanitized”
correctly, it is
possible for a
user to drop a
table from the
SQL database, or
execute shell
commands.

Posting
and getting
from the
server
using
common
commands
that break
a server
should not
break the
server.

Pass. Security
Majors tried
this and
Django
prevents it
from
happening.

W.2 Password
protection
test

Connect
Wireshark, and
see if user
names /
passwords are
able to be seen
leaving the
client and going
to the server.

If the website is
meant to have a
limited set of
users, then a user
name and a
password are
needed. The
passwords need
to be protected.

The
password
leaving the
client
should be
hashed
and salted
so a
hacker
cannot
steal them.

Failed
originally. We
were not using
https, which
means the
passwords
were being
sent over in
plain
text. Since
then, https has
been
implemented.

W.3 User
login test

Ensure valid
users can log in
and invalid
users cannot log
in

The data need to
be available to a
limited set of
users. Therefore,
a user name and

Valid users
can log in,
invalid
users are
rejected.

Pass. Need a
valid
username to
login

Commuter Tracking Sensor Net 108

a password is
needed to gain
access to the
website.

W.4 White-hat
hacker
test

Borrow one of
the many
security majors
the group
knows, tell them
the website, and
see if they can
break in.

Having a friendly
hacker attempt to
break into the
website will
emulate a more
sinister hacker
trying to get in. If
any information is
compromised by
the friendly
hacker, they will
not steal it.

If the
friendly-
hacker
cannot
break in,
the test
passes.

The outcome
of this was the
security majors
provided us
with a
document with
suggestions on
how to make
the site more
secure. Their
suggestions
were followed.

Commuter Tracking Sensor Net 109

Gateway Software Testing

The software that ran on the gateway node was extensively unit tested with the help of

the C++ unit testing library CppUTest. There were two sections of code that were

extensively unit tested, and that is the “common” software that could run on any

software in the CTSN (such as the gateway, or on the CV server), and the gateway

software that only ran on the gateway node. For the common software, 49 unit tests

were written with 91.47 % test coverage. This is shown in Figure 61.

Figure 61- Unit Test Results for CTSN common

The top screenshot shows that all tests pass for CTSN common. The bottom picture

shows the test coverage for each file in the CTSN common project, and how much of

each file is unit tested.

For the gateway software, 222 unit tests were written with 89.09% test coverage. This

is shown in figure 62.

Commuter Tracking Sensor Net 110

Figure 62- Unit Test Results for Gateway Software

The top screenshot shows that all tests pass for the gateway software. The bottom

pictures show the test coverage for each file in the gateway software project, and how

much of each file is unit tested.

In total, 271 unit tests were written for the gateway and CTSN common software with a

very high amount of test coverage.

Commuter Tracking Sensor Net 111

Risks

Theft and Weather-proofing

One risk is the nodes might get damaged or stolen. The nodes will need to be weather-

proofed to prevent damage from the weather, and ruggedized in case they are

dropped. To minimize the risk of the nodes being stolen, they might need to be hidden,

such as in a fake rock or camouflaged. Another option would be to place nodes at a

vantage point by raising them up with a pole or extending device. This would not only

deter theft, but also would allow for the field of view necessary for the CV algorithms that

will be used.

Use of Low-Power Modes

There is a risk of the nodes using so much power that they cannot be deployed for very

long. Some things that can be done to extend the power of the node could be to put them

to sleep at night, and to ensure there is not a lot of CPU processing when the trail is empty

by forcing a low power state during these periods. Although these techniques, along with

the trickle charger attached to the nodes, can extend the battery’s charge, it will probably

not be enough to sustain the nodes indefinitely. Therefore, there should be some kind of

notification sent to the frontend when a node gets close to or runs out of power, so that

the batteries can be replaced.

Battery Damage and Fire

Regarding the battery, there is risk of fire if it is not properly charged with a regulated

current at a specified rate, as with all Lithium based batteries. The boost converter should

mitigate these risks, but the notification system should once again be used to alert the

user and the system when the battery is in a bad state. This would occur after the boost

converter starts exhibiting signals at the output that are in excess of what is allowed by

the battery, and should result in shutdown of the device, or the signal acquisition portion

of the device. Overcharge and undercharge are both a concern with this type of battery

as well, and similar notifications should be sent when battery life is at 95% and less than

5% to alert the user that the node’s battery is in a critical state. DC signal harvesting

Commuter Tracking Sensor Net 112

should not be active in either case, which can be programmed through the boost converter

as well.

CV Procedural Difficulties

The most difficult part of the project is probably going to be identifying the specimens that

walk or ride within the line of sight of the node. The node’s software needs to determine

if the person is walking, riding a bike, or riding a horse, but other factors might come into

play, such as lighting, small animals, how close or how far the person is away from the

node, how many people are in the shot, and other unknowns. It is going to take some

trial and error to get the algorithm right. Use of the Pixy cam will mitigate these risks

somewhat, due to its ability to utilize robust versions of modern-day CV algorithms, and

due to all of the support and example material that is available through online forums.

Commuter Tracking Sensor Net 113

High-Risk Investigations

Several components were identified as high-risk, and a detailed investigation has been

conducted for each of them, including the choice of sustainable energy used for each

node, the MCU, and the sensor node network architecture.

Windbelt

The windbelt can be considered a high-risk component simply due to its nature as a newly

innovated sustainable energy solution. Because of this, there are very few example cases

on which to conduct research. Furthermore, the results of those cases are vastly diverse

due to custom construction of the windbelt and application in widely different settings.

Because of this, original research will be needed in identifying an optimal variant of the

design and applying that design in the most effective manner.

Other risk considerations are whether or not the windbelt can provide a large enough

signal to the amplification stage of the circuit, and whether it can do so consistently. To

mitigate this risk, an optimized version of the windbelt will be used, where dimensions,

belt length, magnet and coil sizes and distances have been carefully considered and

tested to maximize AC current production and minimize size. AC rectification will function

not only to convert AC to DC, but will also provide limited reverse-current protection.

The majority of risk mitigation will be handled by the boost converter, which will allow for

the use of MPPT algorithms. MPPT will track current production over time, calculate an

average, and then adjust internal potentiometer values to zero in on that average during

over-efficient and under-efficient periods. MPPT will greatly reduce the risk of battery

damage, plating, and fire for this reason. Extensive testing will be conducted in a

controlled environment prior to exposing the signal harvesting system to the outdoors. It

is possible that no wind will be available in the area. During extended periods of little to

no harvesting, the admin must once again be made aware through use of a notification

system that no charge is being generated.

Commuter Tracking Sensor Net 114

Sensor-Node Architecture

The risks associated with the sensor nodes and network communications mainly relate

to whether or not range of the nodes will be sufficient. The XBee documentation claims

that the communication range of the XBees is 4 miles with a 2.1dB antenna. However,

documentation regarding range is typically inaccurate. If the range of the XBees is not

long enough, adding a more powerful antenna to the XBee radio modules should suffice.

Commuter Tracking Sensor Net 115

Schedule

Anything marked “R2” did not make it for this first iteration of the project. It will be done
in the second iteration.

Table 5 - Milestone Chart

Milestone

Team
Member
in
Charge

Modified
Completion
Date

Original
Completion
Date

Comments

1. Contact
Monroe
County

Discuss
deployment
options for
sensor nodes. Jared R2 10/27/2014

Did not get to the deployment
stage.

2. Networking
Architecture
Configuration
and Testing R2 6/15/2014

2.1 Configure
XBees for
DigiMesh and
have them
communicating
in close
proximity Seth 10/16/2014 6/1/2014

COMPLETED

2.2 Range Test

Seth,
Alex R2 6/9/2014

Failed. We did not get the
required range from the
XBee. That being said, we tested
it on RIT’s campus, which is
considered an urban
environment. If we went to a less
urban environment, it may have
worked better.

2.3 Small-scale
trail
deployment

Seth,
Alex R2 6/15/2014

Never done since 2.2 Failed.

3. Windbelt
power module
design 10/2/2014 6/18/2014 COMPLETE

Commuter Tracking Sensor Net 116

3.1
Breadboard
prototyping

Alex 11/21/2014 6/1/2014

COMPLETE
Breadboard prototyping is
complete. The secondary boost
converter and buck converter
work well together. Power has
been supplied to both an XBee
radio and PixyCam through the
battery management system.

3.2 PCB
design Alex 11/26/2014 6/10/2014

COMPLETE

3.3 Ship
design for
stamping

Alex 11/5/2014 6/18/2014

COMPLETE

First iteration of design was
ordered. Parts for the board are
known, and will be ordered within
the weekend. Future iterations of
design will merge the EVM
functionality to the custom
design.

3.4 Spice
Transient
Analysis

Alex 10/20/2014 9/22/2014

COMPLETE

Transient analysis is complete for
both the buck and secondary
boost converter. Levels are
attainable for both the 6-10V
unregulated (Pixy) and 3-3.3V
regulated (XBee) ranges per
transient simulations produced by
TI's WEBDESIGN application.

4. Windbelt
power module
construction
and testing 11/26/2014 6/30/2014

COMPLETE

4.1 Solder on
components Alex 11/26/2014 6/29/2014

COMPLETE

4.2 Continuity
tests Alex 11/26/2014 6/30/2014

COMPLETE

5.
Server/Gatew
ay setup Seth 10/10/2014 7/1/2014

COMPLETE

The server is a Raspberry Pi
located at ctsn.student.rit.edu.

Commuter Tracking Sensor Net 117

5.1 Install
software
(Django,
Apache, etc.) Seth 6/21/2014 6/17/2014

COMPLETE

Apache, Django, MariaDB are
installed and ready to go.

5.2 Interface
XBee with Pi

Seth 10/31/2014 7/1/2014

COMPLETE

Are able to Tx and Rx with the
XBees between two Pis.

5.3 Install and
configure
fail2ban Seth 9/1/2014 6/21/2014

COMPLETE

6.
Server/Gatew
ay testing 10/12/2014 7/1/2014

COMPLETE

6.1 Disable
root login test

Seth 6/21/2014 6/16/2014

COMPLETE

Done automatically when
Raspbian was updated

6.2 Set the
SSH port to a
non-standard
port test Seth 6/21/2014 6/17/2014

COMPLETE

SSH Port is set to 1315, not the
default port of 22

6.3 Disable
password login
test - must log
in with SSH
key

Alex,
Jared,
Seth 9/5/2014 6/21/2014

COMPLETE

SSH Keys are required to login to
the server via SSH

6.4 White Hat
Hacker Test

Seth 10/12/2014 6/21/2014

COMPLETE

They could not access the server
via SSH, get a root shell, or
access the database directly.
Jared (security major) will be
providing a formal report of the
pen test results. We will be able
to fortify security based on the
results.

6.5 Ping
disabled test Seth,

Security
Majors R2 6/21/2014

DEFERRED While the server is
on the RIT campus, this is
completed since outsiders cannot
ping rit.edu. If the server moves
off campus for whatever reason,
this will need to be revisited

7. Sensor
hardware R2 7/11/2014

Commuter Tracking Sensor Net 118

testing and
integration

7.1 Begin
playing with
Pixy Cam in
USB tethered
mode

Jared,
Alex,
Seth 7/11/2014 5/1/2014

COMPLETE
We've all experimented and
interfaced with the PixyCam now,
and familiarized ourselves with its
basic operation.

7.2 Interface
Pixy Cam with
an XBee Jared R2 6/22/2014

The PixyCam was more difficult
than originally thought. This did
not make it.

7.3 Integrate
with existing
power module

Jared,
Alex 11/21/2014 7/11/2014

COMPLETE

8. Sensor
Enclosure
Design /
Testing 11/14/2014 8/7/2014

8.1 Use CAD
tools to design
sensor
enclosure Jared 12/1/2014 7/1/2014

COMPLETE

8.2 Use 3D
printer to print
the enclosures Jared 12/1/2014 7/15/2014

COMPLETE

8.3 Test (See
Gantt Chart) Jared R2 8/7/2014

9. Windbelt
Testing

Alex 11/21/2014 5/27/2014

COMPLETE

Testing has been completed with
an 800mV AC signal while driving
both the PixyCam and the XBee
through the battery management
system. The battery holds charge
for extended periods of time.

10. Sensor
Software -
Identify
targets 10/24/2014 9/1/2014

10.1 Code
Review for
Pixy Software

Alex,
Seth,
Jared 9/8/2014 9/8/2014

COMPLETE

Code review was completed.
Information was documented
regarding each file's contents.

Commuter Tracking Sensor Net 119

10.2 Compile
GCC version of
Pixy software
and note
differences 9/8/2014

No longer a requirement. Keil will
work just fine.

10.3 Train
camera for
identifying
walkers,
bikers, and
horses

Jared 12/1/2014 8/1/2014

For R1, the Camera was not
trained to identify
entities. Instead, the picture was
sent across the network to the big
computer, which handled the
CV. For R1, only pedestrians
were trained.

10.4 Train
camera to
figure out what
direction the
target is going Jared R2 9/1/2014

11. Database
Creation 9/23/2014 9/14/2014

COMPLETE

11.1 Create
MySQL or
MariaDB
database so
data from trail
can be saved
to it Seth 11/5/2014 9/5/2014

COMPLETE

The database is running on the
gateway node. It is MariaDB.

12. Website
Creation

 9/26/2014 9/28/2014

COMPLETE

Final website is located at
https://ctsn.student.rit.edu

12.1 Create
status
webpage,
hosted
somewhere
else

Seth 9/5/2014 9/5/2014

COMPLETE
Status webpage that pings the
gateway is functional. Its
currently hosted on one of Seth's
Pis off campus, located at
http://people.rit.edu/~srh7240/cts
n_status .

12.2 Create
web front end Seth 10/31/2014 9/14/2014

COMPLETE

12.3 Link
website to
database Seth 11/5/2014 9/21/2014

COMPLETE
Website displays the results from
the database.

Commuter Tracking Sensor Net 120

13. Website
Testing (See
Gantt Chart)

Team 10/12/2014 10/4/2014

COMPLETE

Jared (security major) provided a
formal report of the pen test
results. We were able to

Fortify security based on the
results.

14. Target
Data
Communicatio
n 11/21/2014 10/5/2014

14.1 Sensors
communicate
target data with
each other Seth R2 10/4/2014

Did not make it. The fact that we
are unable to set the XBees
address makes this task difficult
to dynamically add or remove
nodes to the trail. Although it can
be done given more time, right
now it is not feasible. It is a "nice
to have" feature, and is not a
show-stopper.

14.2 Sensors
can
communicate
and write
target data to
database

Jared,
Seth R2 10/5/2014

Gateway side is done. Only need
to do the PixyCam side.

15. Computer
Vision Testing
(See Gantt
Chart)

Jared,
Seth R2 10/28/2014

Dependent on 10.3 and 10.4

16.
Deployment R2 11/9/2014

16.1 Deploy
nodes on trail Team R2 11/5/2014

Did not make it.

16.2 Activate
website Team 9/27/2014 11/9/2014

COMPLETE

Website is located at
https://ctsn.student.rit.edu (login
required)

17.Integration
Testing 11/13/2014

17.1 Advanced
II integration
testing with
focus on single Team R2

The XBee and the Pixy Cam
were connected to the power
module. The power module was
able to power both at the same

Commuter Tracking Sensor Net 121

node in
controlled
environment

time successfully. However, the
Pixy Cam was not able to run the
CV algorithms, so the test should
be redone when the CV algorithm
is working on it so it is a proper
integration test.

17.2 Advanced
II integration
testing with
focus on single
node in an
outdoor
environment Team R2

Didn’t make it this far.

17.3 Advanced
II testing with
focus on
operation in
outdoor
environment
for multiple
nodes Team R2

Didn’t make it this far.

Commuter Tracking Sensor Net 122

Figure 63 - Gantt Chart

Commuter Tracking Sensor Net 123

Perspective

Power Module

Although the learning curve for prototyping and creating a custom PCB design was

large, it was extremely satisfying once the design was complete, and testing showed

that it worked. Learning EAGLE is a valuable experience that will come to use in many

future situations. It was also interesting to see how SMT components are soldered to a

board, and the various reflow techniques that are used in industry. There is a great

amount of manual skill involved in placing solder paste on a board, laying down the

components, and melting and cooling the solder without blowing chips off of the board.

Thankfully, resources were available on campus to advise on some of the subtleties of

the trade.

Future iterations of the PCB will include an XBee mount that will allow for interfacing 20

pins with the board. The mount will be routed to an 8-pin interface that will be used to

attach to a Pixy camera module. Another 8-pin connector will be used to attach the IR

module, and a wake on detect pin will be connected to the power pin for both the Pixy

camera and the XBee. This will allow for the devices to be in sleep mode during low

traffic periods. When a commuter passes by, the infrared module will set the wake pin,

turning on the peripherals needed to perform the tracking algorithms. The PCB will also

have two-pin connectors to attach the windbelt to the rectifier, the boost converter to the

battery, and the Pixy camera to the secondary boost converter. A BNC connector will

allow for an antenna to be attached to the XBee, and be positioned outside of the node

enclosure.

Networking

Overall, the networking went fairly smoothly. Almost everything went as expected when

the project was originally designed. The trickiest part was getting the XBees working

correctly. The XBees require any messages sent over using them to be in a certain

format. The general format is a start character, the length, the address to send to, a few

options, the payload and a checksum. The XBee has a few characters that need to be

escaped, as they mean something special to the XBee firmware. One of the XBee’s

Commuter Tracking Sensor Net 124

mac addresses had one of these characters in it, so we had to use the XBees with

escape characters enabled. The escape characters proved to be a tad annoying since

the character that needed to be escaped need a ‘}’ character before it, and it needed to

be xored with 0x20. The escape characters (‘}’) also did not get added to the length of

the packet, nor were added to the checksum. In addition, escaped characters that were

xored with 0x20 needed to be added to the checksum before being xored. Although this

was annoying, and took longer than originally thought, we did get it working.

One thing that did not make it into this iteration of the project was a common operating

picture across the trail nodes. This task would have been difficult to do as every trail

node would need to know the address and location of every other node on the trail, and

have some way to get updated information about this just in case a node went down, or

was taken off of the trail. Although this could be done given a lot more time, it would not

be an easy task.

Website

The website did not quite have as many features as was originally planned for. For

example, we wanted the data to be sorted by date, by time, by node, along with various

other filtering schemes. There is also no way for a user to reset his or her password

themselves. Also, the website looks only okay on a mobile device. Once the basic

functionality of the website was in place, the network architecture needed to be worked

on more. It might have helped to have had a fourth person who only worked on the

website and database. That would have freed Seth up to make the network architecture

better.

Image Processing

The biggest hurdle that we encountered was working with the PixyCam system. We

planned on a major rewrite of the firmware of a fairly complex system. As the PixyCam

is an open source project there is little support and virtually no documentation. The

community remains small at this stage and as such there isn’t the level of information or

documentation that one typically finds with a system of this depth and size. Because of

Commuter Tracking Sensor Net 125

this lack of formal support and documentation it was very difficult to accomplish our

goals. Simple questions that would typically be addressed in code documentation could

only be answered by experimentation. These conditions drastically slowed

development. We ultimately had success implementing the system utilizing the PiCam

because of the extensive community, example code, and documentation that went

along with that system.

Knowing what we know now other hardware would have been selected for the image

acquisition system. Something from a professional vendor instead of a small open

source project. At least 50% of the value of the hardware you are purchasing is in the

documentation and support that typically comes along with that purchase. These

characteristics of component selection will be a greater consideration in the future as a

result of this experience.

The Future

We’ve entered the project into the Texas Instruments 2015 Design Competition. As

such we will be continuing development and refinement of the system. With the

additional time we should be able to fully integrate the PixyCam into the system as

originally envisioned.

Prior to this we would like to test the time of operation with our current configuration. A

model A Raspberry Pi only has a power consumption of approximately 115mA and

approximately 200mA added with the PiCam. This is about 50% higher that the

PixyCam specs but could still provide a long enough of operation time to gather the

needed data. A redesign of the enclosure would be needed but that is a relatively

simple proposition.

Additional memory needs to be added to the PixyCam system to make it usable for the

CV applications that we desire to use it for. There are SPI memory modules that can

easily be added to the system to interface with the PixyCam. Having this additional

memory to flash programs to and to perform the CV computation in will be very valuable

to not only accomplishing what we want but in diversifying the system to perform a

variety of tasks. Additional memory would allow us to offer other services on the nodes

themselves besides the feature detection.

